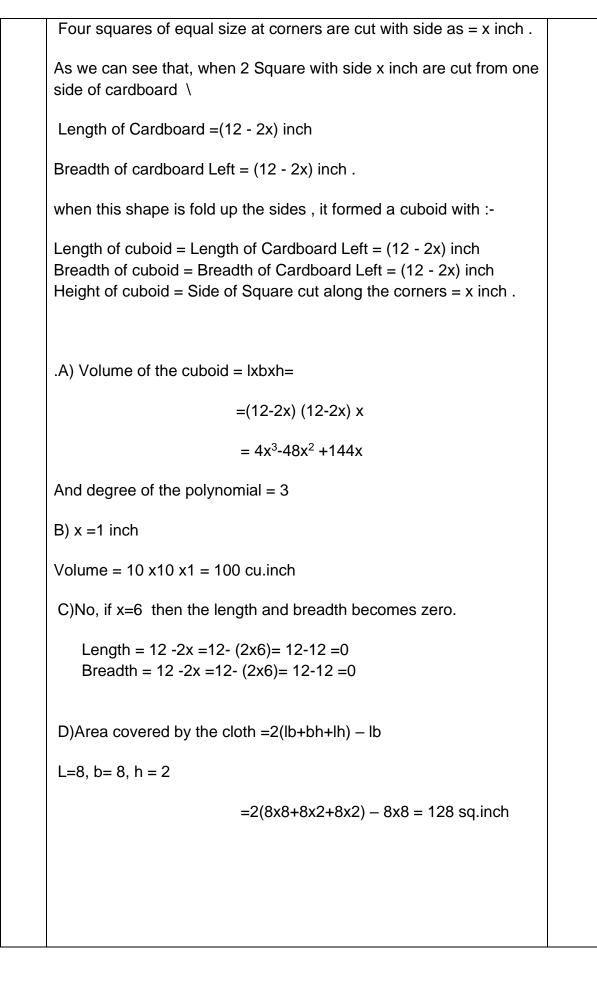
KENDRIYA VIDYALAYA SANGATHAN KOLKATA REGION SESSION ENDING EXAM 2022 (TERM-2) MARKING SCHEME CLASS –IX SUBJECT- MATHEMATICS

TOTAL MARKS-40


TIME-90 MINUTES

Q.	SECTION:- A	Marks
No.		
1	P(x) = x + 2	
	P(2) = 2+2=4 and $p(-2) = -2+2=0$	(1)
	x = -2 is the zero of the polynomial.	(1)
	OR	
	$p(x) = 5x - 4x^2 + 3$	(1)
	$P(1) = 5(-1) - 4(-1)^{2} + 3 = -5 - 4 + 3 = -6$	(1)
2.	∠x=∠y=45°	(1)
۷.	$SO, \angle X + \angle y = 90^{\circ}$	(1)
3.		
	A B E C D	
	We know that perpendicular drawn from the centre of the circle bisect the chord.	(1)
	Hence BE=EC (1) and AE=ED (2)	
	On subtracting (1) and (2) we get	
	AE-BE =ED-EC	
	AB=CD	
		(1)
4.	Let r be the radius and h be the height of the cylinder. Then,	
	2πrh =88 and h=14	(1)
	$2 \times \frac{22}{7} \times r \times 14 = 88$	
	88×7	(1)
	r = 1 cm	
	d=2r=2 cm	(1)
	OR	
	volume of the cube = $(side)^3$	(1)
	$1000 = (side)^3$	
	10= side	(1)
	Side of Cube=10 cm	. ,
	Total Surface Area= $6(side)^2 = 6(10)^2 = 600 \text{ cm}^2$	(1)
5.	The total number of days for which the record is available =250 days	
	No of days when the forecasts were correct=175 Days	(4)
	$\therefore \text{Probability} = \frac{\text{Totalno.of correct forecast}}{\text{Total No.ofdays for which the record is available}}$	(1)
	$=\frac{175}{250}=0.7$	(1)
6		
6.	Total outcomes = 1000	
	Frequency of Head = 455	
	Frequency of Tail = 545	

	Probability of getting head = $P(H) = 455/1000 = 0.455$	(1)
	Probability of getting tail $= P(T) = 545/1000 = 0.545.$	(1)
	Section B	
7.	x ³ +y ³ = (x+y) ³ -3xy(x+y) =(12) ³ -3x27x12 =756 OR	(1) (1) (1)
	$9x^{2}+ 49y^{2}+25z^{2}-42xy-30xy+70yz$ =(3x) ² +(7y) ² +(5z) ² - 2 .3x.7y - 2.3x.5z +2.7y.5z =(-3x) ² +(7y) ² +(5z) ² +(2 ×3x × .7y) +(2.× -3x.×5z) +(2×7y × 5z) Using identity a ² +b ² +c ² +2ab+2bc+2ac = (a+b+c) ²	(1) (1)
	$= (-3x+7y+5z)^{2}$ = (-3x+7y+5z) (-3x+7y+5z)	(1)
8.	103 x 107 Identity: $(x + a) (x + b) = x^2 + (a + b) x + ab$ 103 x 107 = $(100 + 3) (100 + 7)$	(1)
	Substituting x = 100, a = 3, b = 7 in the above identity, we get = $(100)^2 + (3 + 7) (100) + (3)(7)$	(1)
	= 10000 + 1000 + 21 = 11021 OR	(1)
	$998^{3}=(1000-2)^{3}$, which is in the form of (a-b) ³ (a-b) ³ = a ³ -b ³ - 3ab(a-b) that implies, $1000^{3}-2^{3}-3\times1000\times2(1000-2)$ = $1000000000-8-6000(998)$	(1)
	=100000000-5988000-8 =994011992	(1) (1)
9.	î	(1) (2)
	B 45 8 cm	
10.	Height of conical vessel (h) = 8 cm Slant height of conical vessel (l) = 10 cm $\therefore r^2 + h^2 = l^2$ $\Rightarrow r^2 + 8^2 = 10^2$ $\Rightarrow r^2 = 100 - 64 = 36$	(1)
	⇒ r = 6 cm Now, volume of conical vessel = $\frac{1}{3}$ πr ² h = $\frac{1}{3}$ ×3.14 x 6x6 × 8 = 301.44cm ³ = 0.30144 litres	(2)
	Section C	

 11. Proof: i) In quadrilateral ABED, AB = DE and AB DE (given) So, quadrilateral ABED is a parallelogram [Since a pair of opposite side is equal and parallel] (ii) In quadrilateral BEFC Again BC = EF and BC EF. 	(1)
AB = DE and AB DE (given) So, quadrilateral ABED is a parallelogram [Since a pair of opposite side is equal and parallel] (ii) In quadrilateral BEFC	(1)
So, quadrilateral ABED is a parallelogram [Since a pair of opposite side is equal and parallel] (ii) In quadrilateral BEFC	(1)
[Since a pair of opposite side is equal and parallel] (ii) In quadrilateral BEFC	
(ii) In quadrilateral BEFC	
	(1)
so, quadrilateral BEFC is a parallelogram.	(')
[Since a pair of opposite side is equal and parallel]	
(iii) Since ABED and BEFC are parallelograms.	(1)
AD = BE and $BE = CF$ (Opposite sides of a parallelogram are	
equal)	
Thus, $AD = CF$.	
Also, AD BE and BE CF	
Thus, AD CF Hence , AD CF & AD= CF	
iv) since AD CF & AD= CF	(1)
so ADCF is a parallelogram	
12. We have a circle with centre O, such that $\angle AOB = 60^{\circ}$ and $\angle BOC = 30^{\circ}$	
	(1)
$\therefore \angle AOB + \angle BOC = \angle AOC$	(1)
$\therefore \angle AOC = 60^\circ + 30^\circ = 90^\circ$	(1)
The angle subtended by an arc at any part of the circle is half the angle subtended by it at the centre.	(2)
$\therefore \angle ADC = 12 (\angle AOC) = 12(90^{\circ}) = 45^{\circ}$	(2)
OR Given : A circle with centre O. AB = CD	
	(1)
To prove: $\angle AOB = \angle COD$	
Proof: In triangles AOB and COD,	
OA = OC (Radii of a circle)	
OB = OD (Radii of a circle)	(2)
AB = CD (Given)	
Therefore, $\triangle AOB \cong \triangle COD$ (SSS rule)	
This gives $\angle AOB = \angle COD$	(1)
(Corresponding parts of congruent triangles)	
Section - II	

13.	Conical tent with height 10m and diameter 14m.	
	=> radius = 14/2 = 7 m	
	h = 8 m	
	slant height = $l^2 = 7^2 + 10^2 = 149$	
	l=12.2	(1)
	slant height of the tent = 12.2 m	(.)
	CSA of the tent = $\pi r l = \frac{22}{7} \times 7 \times 12.2 = 268.4 \text{m}^2$	(1)
	A) cloth used for the floor = $300 - 268.4 = 31.6 \text{ m}^2$	
	B) volume of the tent = $\frac{1}{3} \pi r^2 h$	(1)
	$=\frac{1}{3} \times \frac{22}{7} x7^2 \times 10 = 513.3 \text{m}^3$	(1)
	3 /	
	C) Area of the floor = πr^2	
	$=\frac{22}{7}\times7^2$	(1)
	⁷ = 154m ²	
	D) Curved surface Area of tent = πr l	
	CSA of the tent = $\pi r l = \frac{22}{7} \times 7 \times 12.2 = 268.4 \text{m}^2$	
	(A)(i) (B) (iii)	
	(B) (iii) (C)(iv) (D) (ii)	
14)	Cardboard in the above of Science of side 10 in the	
14)	Cardboard in the shape of Square of side = 12 inch .	

