KENDRIYA VIDYALAYA SANGATHAN

KOLKATA REGION
SESSION ENDING EXAM 2022 (TERM-2)
MARKING SCHEME
CLASS -IX SUBJECT- MATHEMATICS
TOTAL MARKS-40
TIME-90 MINUTES

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	SECTION:- A	Marks
1	$\begin{aligned} & P(x)=x+2 \\ & P(2)=2+2=4 \text { and } p(-2)=-2+2=0 \end{aligned}$ $x=-2$ is the zero of the polynomial. OR $\begin{aligned} & p(x)=5 x-4 x^{2}+3 \\ & P(1)=5(-1)-4(-1)^{2}+3=-5-4+3=-6 \end{aligned}$	(1) (1) (1) (1)
2.	$\begin{aligned} & \angle x=\angle y=45^{\circ} \\ & \text { so }, \angle x+\angle y=90^{\circ} \end{aligned}$	(1) (1)
3.	We know that perpendicular drawn from the centre of the circle bisect the chord. Hence BE=EC ... (1) and $A E=E D . .$. (2) On subtracting (1) and (2) we get $\begin{aligned} & \mathrm{AE}-\mathrm{BE}=\mathrm{ED}-\mathrm{EC} \\ & \mathrm{AB}=\mathrm{CD} \end{aligned}$	(1) (1)
4.	Let r be the radius and h be the height of the cylinder. Then, $2 \pi r h=88$ and $h=14$ $\begin{aligned} & 2 \times \frac{22}{7} \times r \times 14=88 \\ & r=\frac{88 \times 7}{2 \times 22 \times 14} \\ & r=1 \mathrm{~cm} \\ & d=2 r=2 \mathrm{~cm} \end{aligned}$ OR volume of the cube $=(\text { side })^{3}$ $1000=(\text { side })^{3}$ $10=\text { side }$ Side of Cube $=10 \mathrm{~cm}$ Total Surface Area $=6(\text { side })^{2}=6(10)^{2}=600 \mathrm{~cm}^{2}$	(1) (1) (1) (1) (1) (1)
5.	The total number of days for which the record is available $=250$ days No of days when the forecasts were correct=175 Days $\begin{aligned} & \therefore \text { Probability }=\frac{\text { Totalno.of correct forecast }}{\text { Total No.ofdays for which the record is available }} \\ & \quad=\frac{\mathbf{1 7 5}}{\mathbf{2 5 0}}=0.7 \end{aligned}$	$\begin{aligned} & (1) \\ & (1) \end{aligned}$
6.	$\begin{aligned} & \text { Total outcomes }=1000 \\ & \text { Frequency of Head }=455 \\ & \text { Frequency of Tail }=545 \end{aligned}$	

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& \text { Probability of getting head }=P(H)=455 / 1000=0.455 \\
\& \text { Probability of getting tail }=P(T)=545 / 1000=0.545 \text {. }
\end{aligned}
\] \& \begin{tabular}{l}
(1) \\
(1)
\end{tabular} \\
\hline \& Section B \& \\
\hline 7. \& \begin{tabular}{l}
\[
\begin{aligned}
\& x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y) \\
\& =(12)^{3}-3 x 27 \times 12 \\
\& =756
\end{aligned}
\] \\
OR
\[
\begin{aligned}
\& 9 x^{2}+49 y^{2}+25 z^{2}-42 x y-30 x y+70 y z \\
\& =\left(3 x^{2}+(7 y)^{2}+(5 z)^{2}-2.3 x .7 y-2.3 x .5 z+2.7 y .5 z\right. \\
\& =(-3 x)^{2}+(7 y)^{2}+(5 z)^{2}+(2 \times .-3 x \times .7 y)+(2 . x-3 x . \times 5 z)+(2 \times 7 y \times 5 z)
\end{aligned}
\] \\
Using identity \(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ab}+2 \mathrm{bc}+2 \mathrm{ac}=\left(\mathrm{a}+\mathrm{b}+\mathrm{c}^{2}{ }^{2}\right.\)
\[
\begin{aligned}
\& =(-3 x+7 y+5 z)^{2} \\
\& =(-3 x+7 y+5 z)^{(-3 x+7 y+5 z)}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
(1) \\
(1) \\
(1) \\
(1) \\
(1) \\
(1)
\end{tabular} \\
\hline 8. \& \begin{tabular}{l}
\[
103 \times 107
\] \\
Identity: \((x+a)(x+b)=x^{2}+(a+b) x+a b\)
\[
103 \times 107=(100+3)(100+7)
\] \\
Substituting \(x=100, a=3, b=7\) in the above identity, we get
\[
\begin{aligned}
\& =(100)^{2}+(3+7)(100)+(3)(7) \\
\& =10000+1000+21 \\
\& =11021
\end{aligned}
\] \\
OR \\
\(998^{3}=(1000-2)^{3}\), which is in the form of \((a-b)^{3}\)
\[
(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)
\] \\
that implies, \(1000^{3}-2^{3}-3 \times 1000 \times 2(1000-2)\) \\
\(=1000000000-8-6000\) (998)
\[
=1000000000-5988000-8
\] \\
=994011992
\end{tabular} \& \begin{tabular}{l}
(1) \\
(1) \\
(1) \\
(1) \\
(1) \\
(1)
\end{tabular} \\
\hline 9. \& \& \begin{tabular}{l}
(1) \\
(2)
\end{tabular} \\
\hline 10. \& \begin{tabular}{l}
Height of conical vessel (h) \(=8 \mathrm{~cm}\) \\
Slant height of conical vessel \((\mathrm{I})=10 \mathrm{~cm}\)
\[
\begin{aligned}
\& \therefore \mathrm{r}^{2}+\mathrm{h}^{2}=\mathrm{l}^{2} \\
\& \Rightarrow \mathrm{r}^{2}+8^{2}=10^{2} \\
\& \Rightarrow \mathrm{r}^{2}=100-64=36 \\
\& \Rightarrow \mathrm{r}=6 \mathrm{~cm}
\end{aligned}
\] \\
Now, volume of conical vessel \(=\frac{1}{3} \pi r^{2} \mathrm{~h}=\frac{1}{3} \times 3.14 \times 6 \times 6 \times 8=301.44 \mathrm{~cm}^{3}=0.30144\) litres
\end{tabular} \& (1)

(2)

\hline \& Section C \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 11. \& \begin{tabular}{l}
Proof: \\
i) In quadrilateral \(A B E D\), \\
\(A B=D E\) and \(A B \| D E\) (given) \\
So, quadrilateral ABED is a parallelogram \\
[Since a pair of opposite side is equal and parallel] \\
(ii) In quadrilateral BEFC \\
Again \(B C=E F\) and \(B C \| E F\). \\
so, quadrilateral BEFC is a parallelogram. \\
[Since a pair of opposite side is equal and parallel] \\
(iii) Since ABED and BEFC are parallelograms. \\
\(A D=B E\) and \(B E=C F\) (Opposite sides of a parallelogram are equal) \\
Thus, \(A D=C F\). \\
Also, \(A D\) || \(B E\) and \(B E\) || \(C F\) \\
Thus, AD ||CF \\
Hence,\(A D \| C F \& A D=C F\) \\
iv) since \(A D \| C F \& A D=C F\) \\
so ADCF is a parallelogram
\end{tabular} \& (1)
(1)

(1)

(1)

\hline 12. \& | We have a circle with centre O, such that $\angle A O B=60^{\circ} \text { and } \angle B O C=30^{\circ}$ $\because \angle \mathrm{AOB}+\angle \mathrm{BOC}=\angle \mathrm{AOC}$ $\therefore \angle A O C=60^{\circ}+30^{\circ}=90^{\circ}$ |
| :--- |
| The angle subtended by an arc at any part of the circle is half the angle subtended by it at the centre. $\therefore \angle A D C=12(\angle A O C)=12\left(90^{\circ}\right)=45^{\circ}$ |
| OR Given: A circle with centre $O . A B=C D$ |
| To prove: $\angle \mathrm{AOB}=\angle \mathrm{COD}$ |
| Proof: In triangles AOB and COD, |
| $O A=O C$ (Radii of a circle) |
| $\mathrm{OB}=\mathrm{OD}$ (Radii of a circle) |
| $\mathrm{AB}=\mathrm{CD}$ (Given) |
| Therefore, $\triangle \mathrm{AOB} \cong \triangle \mathrm{COD}$ (SSS rule) |
| This gives $\angle \mathrm{AOB}=\angle \mathrm{COD}$ |
| (Corresponding parts of congruent triangles) | \& (1)

(1)
(2)

(1)
(2)
(1)

\hline \& Section - II \&

\hline
\end{tabular}

13. \quad Conical tent with height 10 m and diameter 14 m .
=> radius $=14 / 2=7 \mathrm{~m}$
$\mathrm{h}=8 \mathrm{~m}$
slant height $=I^{2}=7^{2}+10^{2}=149$

I=12.2
slant height of the tent $=12.2 \mathrm{~m}$

CSA of the tent $=\pi r l=\frac{22}{7} \times 7 \times 12.2=268.4 \mathrm{~m}^{2}$
A) cloth used for the floor $=300-268.4=31.6 \mathrm{~m}^{2}$
B) volume of the tent $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} x 7^{2} \times 10=513.3 \mathrm{~m}^{3}$
C) Area of the floor $=\pi r^{2}$
$=\frac{22}{7} \times 7^{2}$
$=154 \mathrm{~m}^{2}$
D) Curved surface Area of tent $=\pi r l$

CSA of the tent $=\pi r l=\frac{22}{7} \times 7 \times 12.2=268.4 \mathrm{~m}^{2}$
(A) -----(i)
(B) ---- (iii)
(C) -----(iv)
(D) ---- (ii)

Cardboard in the shape of Square of side $=12$ inch .

Four squares of equal size at corners are cut with side as $=x$ inch .
As we can see that, when 2 Square with side x inch are cut from one side of cardboard \}

Length of Cardboard $=(12-2 x)$ inch
Breadth of cardboard Left $=(12-2 x)$ inch .
when this shape is fold up the sides , it formed a cuboid with :-
Length of cuboid $=$ Length of Cardboard Left $=(12-2 x)$ inch
Breadth of cuboid $=$ Breadth of Cardboard Left $=(12-2 x)$ inch
Height of cuboid $=$ Side of Square cut along the corners $=x$ inch .
.A) Volume of the cuboid $=\mid x b x h=$

$$
\begin{aligned}
& =(12-2 x)(12-2 x) x \\
& =4 x^{3}-48 x^{2}+144 x
\end{aligned}
$$

And degree of the polynomial $=3$
B) $x=1$ inch

Volume $=10 \times 10 \times 1=100$ cu.inch
C)No, if $x=6$ then the length and breadth becomes zero.

Length $=12-2 x=12-(2 x 6)=12-12=0$
Breadth $=12-2 x=12-(2 x 6)=12-12=0$
D)Area covered by the cloth $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})-\mathrm{lb}$
$\mathrm{L}=8, \mathrm{~b}=8, \mathrm{~h}=2$

$$
=2(8 x 8+8 \times 2+8 x 2)-8 x 8=128 \text { sq.inch }
$$

