
In this chapter
 » Introduction
 » Descriptive Statistics
 » Data Aggregations
 » Sorting a DataFrame
 » GROUP BY Functions
 » Altering the Index
 » Other DataFrame

Operations
 » Handling Missing

Values
 » Import and Export

of Data between
Pandas and MySQL

3.1 IntroductIon

As discussed in the previous chapter, Pandas
is a well established Python Library used for
manipulation, processing and analysis of
data. We have already discussed the basic
operations on Series and DataFrame like
creating them and then accessing data from
them. Pandas provides more powerful and
useful functions for data analysis.

In this chapter, we will be working with
more advanced features of DataFrame like
sorting data, answering analytical questions
using the data, cleaning data and applying
different useful functions on the data. Below
is the example data on which we will be
applying the advanced features of Pandas.

“We owe a lot to the Indians, who
taught us how to count, without
which no worthwhile scientific
discovery could have been made.”

— Albert Einstein

C h a p t e r

 3
Data Handling using
Pandas - II

Chapter 3.indd 63 11/26/2020 12:46:03 PM

2021–22

InformatIcs PractIces64

Case Study
Let us consider the data of marks scored in unit tests
held in school. For each unit test, the marks scored by
all students of the class is recorded. Maximum marks
are 25 in each subject. The subjects are Maths, Science.
Social Studies (S.St.), Hindi, and English. For simplicity,
we assume there are 4 students in the class and the
table below shows their marks in Unit Test 1, Unit Test
2 and Unit Test 3. Table 3.1 shows this data.

Table 3.1 Case Study
Result

Name/
Subjects

Unit
Test

Maths Science S.St. Hindi Eng

Raman 1 22 21 18 20 21

Raman 2 21 20 17 22 24

Raman 3 14 19 15 24 23

Zuhaire 1 20 17 22 24 19

Zuhaire 2 23 15 21 25 15

Zuhaire 3 22 18 19 23 13

Aashravy 1 23 19 20 15 22

Aashravy 2 24 22 24 17 21

Aashravy 3 12 25 19 21 23

Mishti 1 15 22 25 22 22

Mishti 2 18 21 25 24 23

Mishti 3 17 18 20 25 20

Let us store the data in a DataFrame, as shown in
Program 3.1:

Program 3-1 Store the Result data in a DataFrame called marksUT.

>>> import pandas as pd
>>> marksUT= {'Name':['Raman','Raman','Raman','Zuhaire','Zuhaire','Zu
haire', 'Ashravy','Ashravy','Ashravy','Mishti','Mishti','Mishti'],
 'UT':[1,2,3,1,2,3,1,2,3,1,2,3],
 'Maths':[22,21,14,20,23,22,23,24,12,15,18,17],
 'Science':[21,20,19,17,15,18,19,22,25,22,21,18],
 'S.St':[18,17,15,22,21,19,20,24,19,25,25,20],
 'Hindi':[20,22,24,24,25,23,15,17,21,22,24,25],
 'Eng':[21,24,23,19,15,13,22,21,23,22,23,20]
 }
>>> df=pd.DataFrame(marksUT)
>>> print(df)

Chapter 3.indd 64 11/26/2020 12:46:03 PM

2021–22

Data HanDling using PanDas - ii 65

 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22 21 18 20 21
1 Raman 2 21 20 17 22 24
2 Raman 3 14 19 15 24 23
3 Zuhaire 1 20 17 22 24 19
4 Zuhaire 2 23 15 21 25 15
5 Zuhaire 3 22 18 19 23 13
6 Ashravy 1 23 19 20 15 22
7 Ashravy 2 24 22 24 17 21
8 Ashravy 3 12 25 19 21 23
9 Mishti 1 15 22 25 22 22
10 Mishti 2 18 21 25 24 23
11 Mishti 3 17 18 20 25 20

3.2 descrIptIve statIstIcs

Descriptive Statistics are used to summarise the given
data. In other words, they refer to the methods which
are used to get some basic idea about the data.

In this section, we will be discussing descriptive
statistical methods that can be applied to a DataFrame.
These are max, min, count, sum, mean, median, mode,
quartiles, variance. In each case, we will consider the
above created DataFrame df.

3.2.1 Calculating Maximum Values
DataFrame.max() is used to calculate the maximum
values from the DataFrame, regardless of its data types.
The following statement outputs the maximum value of
each column of the DataFrame:

>>> print(df.max())
Name Zuhaire #Maximum value in name column
 #(alphabetically)
UT 3 #Maximum value in column UT
Maths 24 #Maximum value in column Maths
Science 25 #Maximum value in column Science
S.St 25 #Maximum value in column S.St
Hindi 25 #Maximum value in column Hindi
Eng 24 #Maximum value in column Eng
dtype: object

If we want to output maximum value for the columns
having only numeric values, then we can set the
parameter numeric_only=True in the max() method, as
shown below:

Chapter 3.indd 65 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces66

>>> print(df.max(numeric_only=True))
UT 3
Maths 24
Science 25
S.St 25
Hindi 25
Eng 24
dtype: int64

Program 3-2 Write the statements to output the
maximum marks obtained in each subject
in Unit Test 2.

>>> dfUT2 = df[df.UT == 2]

>>> print('\nResult of Unit Test 2:
\n\n',dfUT2)

Result of Unit Test 2:

 Name UT Maths Science S.St Hindi Eng

1 Raman 2 21 20 17 22 24

4 Zuhaire 2 23 15 21 25 15

7 Ashravy 2 24 22 24 17 21

10 Mishti 2 18 21 25 24 23

>>> print('\nMaximum Mark obtained in
Each Subject in Unit Test 2: \n\n',dfUT2.
max(numeric_only=True))

Maximum Mark obtained in Each Subject in Unit
Test 2:

UT 2

Maths 24

Science 22

S.St 25

Hindi 25

Eng 24

dtype: int64

By default, the max() method finds the maximum
value of each column (which means, axis=0). However,
to find the maximum value of each row, we have to
specify axis = 1 as its argument.

#maximum marks for each student in each unit
test among all the subjects

The output of Program
3.2 can also be

achieved using the
following statements

>>> dfUT2=df[df
['UT']==2].max
(numeric_only=True)

>>> print(dfUT2)

Chapter 3.indd 66 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 67

>>> df.max(axis=1)

0 22
1 24
2 24
3 24
4 25
5 23
6 23
7 24
8 25
9 25
10 25
11 25
dtype: int64

Note: In most of the python function calls, axis = 0 refers
to row wise operations and axis = 1 refers to column wise
operations. But in the call of max(), axis = 1 gives row wise
output and axis = 0 (default case) gives column-wise output.
Similar is the case with all statistical operations discussed
in this chapter.

3.2.2 Calculating Minimum Values
DataFrame.min() is used to display the minimum values
from the DataFrame, regardless of the data types. That
is, it shows the minimum value of each column or row.
The following line of code output the minimum value of
each column of the DataFrame:

>>> print(df.min())
Name Ashravy
UT 1
Maths 12
Science 15
S.St 15
Hindi 15
Eng 13
dtype: object

Program 3-3 Write the statements to display the
minimum marks obtained by a particular
student ‘Mishti’ in all the unit tests for
each subject.

>>> dfMishti = df.loc[df.Name == 'Mishti']

notes

Chapter 3.indd 67 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces68

>>> print('\nMarks obtained by Mishti in all
the Unit Tests \n\n',dfMishti)

Marks obtained by Mishti in all the Unit Tests
 Name UT Maths Science S.St Hindi Eng

9 Mishti 1 15 22 25 22 22

10 Mishti 2 18 21 25 24 23

11 Mishti 3 17 18 20 25 20

>>> print('\nMinimum Marks obtained by
Mishti in each subject across the unit
tests\n\n', dfMishti[['Maths','Science','S.
St','Hindi','Eng']].min())

Minimum Marks obtained by Mishti in each subject
across the unit tests:

Maths 15
Science 18
S.St 20
Hindi 22
Eng 20
dtype: int64

Note: Since we did not want to output the min value of
column UT, we mentioned all the other column names for
which minimum is to be calculated.

3.2.3 Calculating Sum of Values
DataFrame.sum() will display the sum of the values
from the DataFrame regardless of its datatype. The
following line of code outputs the sum of each column
of the DataFrame:

>>> print(df.sum())
Name
RamanRamanRamanZuhaireZuhaireZuhaireAshravyAsh...
UT 24
Maths 231
Science 237
S.St 245
Hindi 262
Eng 246
dtype: object

We may not be interested to sum text values. So,
to print the sum of a particular column, we need to

The output of Program
3.3 can also be

achieved using the
following statements

>>> dfMishti=df[['
Maths','Science','S.
St','Hindi','Eng']][df.
Name == 'Mishti'].min()
>>> print(dfMishti)

Chapter 3.indd 68 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 69

specify the column name in the call to function sum.
The following statement prints the total marks of
subject mathematics:

>>> print(df['Maths'].sum())
231

To calculate total marks of a particular student, the
name of the student needs to be specified.

Program 3-4 Write the python statement to print
the total marks secured by raman in
each subject.

>>> dfRaman=df[df['Name']=='Raman']
>>> print(“Marks obtained by Raman in each test
are:\n”, dfRaman)
Marks obtained by Raman in each test are:
 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22 21 18 20 21
1 Raman 2 21 20 17 22 24
2 Raman 3 14 19 15 24 23

>>> dfRaman[['Maths','Science','S.
St','Hindi','Eng']].sum()

Maths 57
Science 60
S.St 50
Hindi 66
Eng 68
dtype: int64

#To print total marks scored by Raman in all
subjects in each Unit Test
>>> dfRaman[['Maths','Science','S.
St','Hindi','Eng']].sum(axis=1)
0 102
1 104
2 95
dtype: int64

3.2.4 Calculating Number of Values
DataFrame.count() will display the total number of
values for each column or row of a DataFrame. To count
the rows we need to use the argument axis=1 as shown
in the Program 3.5 below.

Can you write a
shortened code to get
the output of Program
3.4?

Think and Reflect

Activity 3.1

Write the python
statements to print
the sum of the english
marks scored by
Mishti.

Chapter 3.indd 69 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces70

>>> print(df.count())

Name 12
UT 12
Maths 12
Science 12
S.St 12
Hindi 12
Eng 12
dtype: int64

Program 3-5 Write a statement to count the number of
values in a row.

>>> df.count(axis=1)
0 7
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7
11 7
dtype: int64

3.2.5 Calculating Mean
DataFrame.mean() will display the mean (average) of
the values of each column of a DataFrame. It is only
applicable for numeric values.

>>> df.mean()
UT 2.5000
Maths 18.6000
Science 19.8000
S.St 20.0000
Hindi 21.3125
Eng 19.8000
dtype: float64

Program 3-6 Write the statements to get an average
of marks obtained by Zuhaire in all the
Unit Tests.

notes

Chapter 3.indd 70 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 71

>>> dfZuhaireMarks = dfZuhaire.
loc[:,'Maths':'Eng']
>>> print("Slicing of the DataFrame to get only
the marks\n", dfZuhaireMarks)

Slicing of the DataFrame to get only the marks
 Maths Science S.St Hindi Eng
3 20 17 22 24 19
4 23 15 21 25 15
5 22 18 19 23 13

>>> print("Average of marks obtained by
Zuhaire in all Unit Tests \n", dfZuhaireMarks.
mean(axis=1))

Average of marks obtained by Zuhaire in all
Unit Tests
3 20.4
4 19.8
5 19.0
dtype: float64

In the above output, 20.4 is the average of marks
obtained by Zuhaire in Unit Test 1. Similarly, 19.8 and
19.0 are the average of marks in Unit Test 2 and 3
respectively.

3.2.6 Calculating Median
DataFrame.Median() will display the middle value of the
data. This function will display the median of the values
of each column of a DataFrame. It is only applicable for
numeric values.

>>> print(df.median())

UT 2.5
Maths 19.0
Science 20.0
S.St 19.5
Hindi 21.5
Eng 21.0
dtype: float64

Program 3-7 Write the statements to print the median
marks of mathematics in UT1.

>>> dfMaths=df['Maths']

Try to write a short
code to get the above
output. Remember
to print the relevant
headings of the output.

Think and Reflect

Chapter 3.indd 71 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces72

>>> dfMathsUT1=dfMaths[df.UT==1]
>>> print("Displaying the marks scored in
Mathematics in UT1\n",dfMathsUT1)

Displaying the marks of UT1, subject
Mathematics
0 22
3 20
6 23
9 15
Name: Maths, dtype: int64

>>> dfMathMedian=dfMathsUT1.median()
>>> print("Displaying the median of Mathematics
in UT1\n”,dfMathMedian)

Displaying the median of Mathematics in UT1
21.0
Here, the number of values are even in number

so two middle values are there i.e. 20 and 22. Hence,
Median is the average of 20 and 22.

3.2.7 Calculating Mode
DateFrame.mode() will display the mode. The mode is
defined as the value that appears the most number of
times in a data. This function will display the mode of
each column or row of the DataFrame. To get the mode
of Hindi marks, the following statement can be used.

>>> df['Hindi']
0 20
1 22
2 24
3 24
4 25
5 23
6 15
7 17
8 21
9 22
10 24
11 25
Name: Hindi, dtype: int64
>>> df['Hindi'].mode()

Activity 3.3

Calculate the mode
of marks scored in
Maths.

Activity 3.2

Find the median of the
values of the rows of
the DataFrame.

Chapter 3.indd 72 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 73

0 24
dtype: int64

Note that three students have got 24 marks in Hindi
subject while two students got 25 marks, one student
got 23 marks, two students got 22 marks, one student
each got 21, 20, 15, 17 marks.

3.2.8 Calculating Quartile
Dataframe.quantile() is used to get the quartiles. It
will output the quartile of each column or row of the
DataFrame in four parts i.e. the first quartile is 25%
(parameter q = .25), the second quartile is 50% (Median),
the third quartile is 75% (parameter q = .75). By default,
it will display the second quantile (median) of all
numeric values.

>>> df.quantile() # by default, median is the
output
UT 2.0
Maths 20.5
Science 19.5
S.St 20.0
Hindi 22.5
Eng 21.5
Name: 0.5, dtype: float64

>>> df.quantile(q=.25)
UT 1.00
Maths 16.50
Science 18.00
S.St 18.75
Hindi 20.75
Eng 19.75
Name: 0.25, dtype: float64

>>> df.quantile(q=.75)
UT 3.00
Maths 22.25
Science 21.25
S.St 22.50
Hindi 24.00
Eng 23.00
Name: 0.75, dtype: float64

notes

Chapter 3.indd 73 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces74

Activity 3.4

Find the variance and
standard deviation of
the following scores on
an exam: 92, 95, 85,
80, 75, 50.

Program 3-8 Write the statement to display the first and
third quartiles of all subjects.

>>> dfSubject=df[['Maths','Science','S.
St','Hindi','Eng']]
>>> print("Marks of all the subjects:\
n",dfSubject)

Marks of all the subjects:
 Maths Science S.St Hindi Eng
0 22 21 18 20 21
1 21 20 17 22 24
2 14 19 15 24 23
3 20 17 22 24 19
4 23 15 21 25 15
5 22 18 19 23 13
6 23 19 20 15 22
7 24 22 24 17 21
8 12 25 19 21 23
9 15 22 25 22 22
10 18 21 25 24 23
11 17 18 20 25 20

>>> dfQ=dfSubject.quantile([.25,.75])
>>> print("First and third quartiles of all the
subjects:\n",dfQ)

First and third quartiles of all the subjects:
 Maths Science S.St Hindi Eng
0.25 16.50 18.00 18.75 20.75 19.75

0.75 22.25 21.25 22.50 24.00 23.00

3.2.9 Calculating Variance
DataFrame.var() is used to display the variance. It is the
average of squared differences from the mean.

>>> df[['Maths','Science','S.
St','Hindi','Eng']].var()

Maths 15.840909
Science 7.113636
S.St 9.901515

Chapter 3.indd 74 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 75

Hindi 9.969697
Eng 11.363636
dtype: float64

3.2.10 Calculating Standard Deviation
DataFrame.std() returns the standard deviation of the
values. Standard deviation is calculated as the square
root of the variance.

>>> df[['Maths','Science','S.
St','Hindi','Eng']].std()

Maths 3.980064
Science 2.667140
S.St 3.146667
Hindi 3.157483
Eng 3.370999
dtype: float64
DataFrame.describe() function displays the

descriptive statistical values in a single command. These
values help us describe a set of data in a DataFrame.

>>> df.describe()
 UT Maths Science S.St Hindi Eng
count 12.000000 12.000000 12.00000 12.000000 12.000000 12.000000
mean 2.000000 19.250000 19.75000 20.416667 21.833333 20.500000
std 0.852803 3.980064 2.66714 3.146667 3.157483 3.370999
min 1.000000 12.000000 15.00000 15.000000 15.000000 13.000000
25% 1.000000 16.500000 18.00000 18.750000 20.750000 19.750000
50% 2.000000 20.500000 19.50000 20.000000 22.500000 21.500000
75% 3.000000 22.250000 21.25000 22.500000 24.000000 23.000000
max 3.000000 24.000000 25.00000 25.000000 25.000000 24.000000

3.3 data aggregatIons

Aggregation means to transform the dataset and produce
a single numeric value from an array. Aggregation can
be applied to one or more columns together. Aggregate
functions are max(),min(), sum(), count(), std(), var().

>>> df.aggregate('max')

Name Zuhaire # displaying the maximum of Name
as well
UT 3
Maths 24

Chapter 3.indd 75 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces76

Science 25
S.St 25
Hindi 25
Eng 24
dtype: object

#To use multiple aggregate functions in a
single statement
>>> df.aggregate(['max','count'])

 Name UT Maths Science S.St Hindi Eng
max Zuhaire 3 24 25 25 25 24
count 12 12 12 12 12 12 12

>>> df['Maths'].aggregate(['max','min'])
max 24
min 12
Name: Maths, dtype: int64

Note: We can also use the parameter axis with
aggregate function. By default, the value of axis is zero,
means columns.

#Using the above statement with axis=0 gives
the same result
>>> df['Maths'].aggregate(['max','min'],axis=0)
max 24
min 12
Name: Maths, dtype: int64

#Total marks of Maths and Science obtained by
each student.
#Use sum() with axis=1 (Row-wise summation)
>>> df[['Maths','Science']].
aggregate('sum',axis=1)
0 43
1 41
2 33
3 37
4 38
5 40
6 42
7 46
8 37
9 37
10 39
11 35
dtype: int64

notes

Chapter 3.indd 76 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 77

3.4 sortIng a dataFrame

Sorting refers to the arrangement of data elements in
a specified order, which can either be ascending or
descending. Pandas provide sort_values() function to
sort the data values of a DataFrame. The syntax of the
function is as follows:

DataFrame.sort_values(by, axis=0, ascending=True)

Here, a column list (by), axis arguments (0 for rows
and 1 for columns) and the order of sorting (ascending
= False or True) are passed as arguments. By default,
sorting is done on row indexes in ascending order.

 Consider a scenario, where the teacher is interested
in arranging a list according to the names of the students
or according to marks obtained in a particular subject.
In such cases, sorting can be used to obtain the desired
results. Following is the python code for sorting the data
in the DataFrame created at program 3.1.

To sort the entire data on the basis of attribute
‘Name’, we use the following command:

#By default, sorting is done in ascending order.
>>> print(df.sort_values(by=['Name']))

 Name UT Maths Science S.St Hindi Eng
6 Ashravy 1 23 19 20 15 22
7 Ashravy 2 24 22 24 17 21
8 Ashravy 3 12 25 19 21 23
9 Mishti 1 15 22 25 22 22
10 Mishti 2 18 21 25 24 23
11 Mishti 3 17 18 20 25 20
0 Raman 1 22 21 18 20 21
1 Raman 2 21 20 17 22 24
2 Raman 3 14 19 15 24 23
3 Zuhaire 1 20 17 22 24 19
4 Zuhaire 2 23 15 21 25 15
5 Zuhaire 3 22 18 19 23 13

Now, to obtain sorted list of marks scored by all
students in Science in Unit Test 2, the following code
can be used:

Get the data corresponding to Unit Test 2
>>> dfUT2 = df[df.UT == 2]
Sort according to ascending order of marks in
Science

Chapter 3.indd 77 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces78

>>> print(dfUT2.sort_values(by=['Science']))

 Name UT Maths Science S.St Hindi Eng
4 Zuhaire 2 23 15 21 25 15
1 Raman 2 21 20 17 22 24
10 Mishti 2 18 21 25 24 23
7 Ashravy 2 24 22 24 17 21

Program 3-9 Write the statement which will sort the
marks in English in the DataFrame df
based on Unit Test 3, in descending order.

Get the data corresponding to Unit Test 3
>>> dfUT3 = df[df.UT == 3]
Sort according to descending order of marks in
Science
>>> print(dfUT3.sort_values(by=['Eng'],ascending=F
alse))

 Name UT Maths Science S.St Hindi Eng
2 Raman 3 14 19 15 24 23
8 Ashravy 3 12 25 19 21 23
11 Mishti 3 17 18 20 25 20
5 Zuhaire 3 22 18 19 23 13

A DataFrame can be sorted based on multiple
columns. Following is the code of sorting the DataFrame
df based on marks in Science in Unit Test 3 in ascending
order. If marks in Science are the same, then sorting
will be done on the basis of marks in Hindi.

Get the data corresponding to marks in Unit Test
3
>>> dfUT3 = df[df.UT == 3]
Sort the data according to Science and then
according to Hindi
>>> print(dfUT3.sort_
values(by=['Science','Hindi']))

 Name UT Maths Science S.St Hindi Eng
5 Zuhaire 3 22 18 19 23 13
11 Mishti 3 17 18 20 25 20
2 Raman 3 14 19 15 24 23
8 Ashravy 3 12 25 19 21 23

Here, we can see that the list is sorted on the basis
of marks in Science. Two students namely, Zuhaire and
Mishti have equal marks (18) in Science. Therefore for
them, sorting is done on the basis of marks in Hindi.

Chapter 3.indd 78 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 79

3.5 group BY FunctIons

In pandas, DataFrame.GROUP BY() function is used
to split the data into groups based on some criteria.
Pandas objects like a DataFrame can be split on any
of their axes. The GROUP BY function works based on
a split-apply-combine strategy which is shown below
using a 3-step process:

Step 1: Split the data into groups by creating a GROUP
BY object from the original DataFrame.

Step 2: Apply the required function.

Step 3: Combine the results to form a new DataFrame.
To understand this better, let us consider the data

shown in the diagram given below. Here, we have a two-
column DataFrame (key, data). We need to find the sum
of the data column for a particular key, i.e. sum of all
the data elements with key A, B and C, respectively. To
do so, we first split the entire DataFrame into groups
by key column. Then, we apply the sum function on the
respective groups. Finally, we combine the results to
form a new DataFrame that contains the desired result.

A

B

C

A

B

C

15

30

45

A

B

C

A

B

C

A

A

A

0

5

10

B

B

B

5

10

15

C

C

C

10

15

20

0

5

10

5

10

15

10

15

20

key data
split

Sum

Sum

Sum

Apply Combine

Figure 3.1: A DataFrame with two columns

The following statements show how to apply GROUP
BY() function on our DataFrame df created at Program
3.1:

#Create a GROUP BY Name of the student from
DataFrame df
>>> g1=df.GROUP BY('Name')

notes

Chapter 3.indd 79 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces80

#Displaying the first entry from each group
>>> g1.first()
 UT Maths Science S.St Hindi Eng
Name
Ashravy 1 23 19 20 15 22
Mishti 1 15 22 25 22 22
Raman 1 22 21 18 20 21
Zuhaire 1 20 17 22 24 19

#Displaying the size of each group
>>> g1.size()
Name
Ashravy 3
Mishti 3
Raman 3
Zuhaire 3
dtype: int64

#Displaying group data, i.e., group_name, row
indexes corresponding to the group and their
data type
>>> g1.groups
{'Ashravy': Int64Index([6, 7, 8],
dtype='int64'),
 'Mishti': Int64Index([9, 10, 11],
dtype='int64'),
 'Raman': Int64Index([0, 1, 2], dtype='int64'),
 'Zuhaire': Int64Index([3, 4, 5],
dtype='int64')}

#Printing data of a single group
>>> g1.get_group('Raman')
 UT Maths Science S.St Hindi Eng
0 1 22 21 18 20 21
1 2 21 20 17 22 24
2 3 14 19 15 24 23

#Grouping with respect to multiple attributes
#Creating a GROUP BY Name and UT

>>> g2=df.GROUP BY(['Name', 'UT'])

>>> g2.first()

notes

Chapter 3.indd 80 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 81

 Maths Science S.St Hindi Eng
Name UT
Ashravy 1 23 19 20 15 22
 2 24 22 24 17 21
 3 12 25 19 21 23
Mishti 1 15 22 25 22 22
 2 18 21 25 24 23
 3 17 18 20 25 20
Raman 1 22 21 18 20 21
 2 21 20 17 22 24
 3 14 19 15 24 23
Zuhaire 1 20 17 22 24 19
 2 23 15 21 25 15
 3 22 18 19 23 13
The above statements show how we create groups by

splitting a DataFrame using GROUP BY(). Next step is
to apply functions over the groups just created. This is
done using Aggregation.

Aggregation is a process in which an aggregate
function is applied on each group created by GROUP
BY(). It returns a single aggregated statistical value
corresponding to each group. It can be used to apply
multiple functions over an axis. Be default, functions
are applied over columns. Aggregation can be performed
using agg() or aggregate() function.

#Calculating average marks scored by all
students in each subject for each UT
>>> df.GROUP BY(['UT']).aggregate('mean')

 Maths Science S.St Hindi Eng
UT
1 20.00 19.75 21.25 20.25 21.00
2 21.50 19.50 21.75 22.00 20.75
3 16.25 20.00 18.25 23.25 19.75

#Calculate average marks scored in Maths in
each UT
>>> group1=df.GROUP BY(['UT'])
>>> group1['Maths'].aggregate('mean')
UT
1 20.00
2 21.50
3 16.25
Name: Maths, dtype: float64

notes

Chapter 3.indd 81 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces82

Program 3-10 Write the python statements to print the
mean, variance, standard deviation and
quartile of the marks scored in Mathematics
by each student across the UTs.

>>> df.GROUP BY(by='Name')['Maths'].agg(['mean','v
ar','std','quantile'])

 mean var std quantile
Name
Ashravy 19.666667 44.333333 6.658328 23.0
Mishti 16.666667 2.333333 1.527525 17.0
Raman 19.000000 19.000000 4.358899 21.0
Zuhaire21.666667 2.333333 1.527525 22.0

3.6 alterIng the Index

We use indexing to access the elements of a DataFrame.
It is used for fast retrieval of data. By default, a numeric
index starting from 0 is created as a row index, as shown
below:

>>> df #With default Index
 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22 21 18 20 21
1 Raman 2 21 20 17 22 24
2 Raman 3 14 19 15 24 23
3 Zuhaire 1 20 17 22 24 19
4 Zuhaire 2 23 15 21 25 15
5 Zuhaire 3 22 18 19 23 13
6 Ashravy 1 23 19 20 15 22
7 Ashravy 2 24 22 24 17 21
8 Ashravy 3 12 25 19 21 23
9 Mishti 1 15 22 25 22 22
10 Mishti 2 18 21 25 24 23
11 Mishti 3 17 18 20 25 20

Here, the integer number in the first column
starting from 0 is the index. However, depending on our
requirements, we can select some other column to be
the index or we can add another index column.

When we slice the data, we get the original index
which is not continuous, e.g. when we select marks of
all students in Unit Test 1, we get the following result:

>>> dfUT1 = df[df.UT == 1]
>>> print(dfUT1)

Activity 3.5

Write the python
statements to print
average marks in
Science by all the
students in each UT.

Chapter 3.indd 82 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 83

 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22 21 18 20 21
3 Zuhaire 1 20 17 22 24 19
6 Ashravy 1 23 19 20 15 22
9 Mishti 1 15 22 25 22 22

 index Name UT Maths Science S.St Hindi Eng
0 0 Raman 1 22 21 18 20 21
1 3 Zuhaire 1 20 17 22 24 19
2 6 Ashravy 1 23 19 20 15 22
3 9 Mishti 1 15 22 25 22 22

Notice that the first column is a non-continuous
index since it is slicing of original data. We create a new
continuous index alongside this using the reset_index()
function, as shown below:

>>> dfUT1.reset_index(inplace=True)
>>> print(dfUT1)

A new continuous index is created while the original
one is also intact. We can drop the original index by
using the drop function, as shown below:

>>> dfUT1.drop(columns=[‘index’],inplace=True)
>>> print(dfUT1)

 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22 21 18 20 21
1 Zuhaire 1 20 17 22 24 19
2 Ashravy 1 23 19 20 15 22
3 Mishti 1 15 22 25 22 22

We can change the index to some other column of
the data.

>>> dfUT1.set_index('Name',inplace=True)
>>> print(dfUT1)
 UT Maths Science S.St Hindi Eng
Name
Raman 1 22 21 18 20 21
Zuhaire 1 20 17 22 24 19
Ashravy 1 23 19 20 15 22
Mishti 1 15 22 25 22 22

We can revert back to previous index by using
following statement:

>>> dfUT1.reset_index('Name', inplace = True)
>>> print(dfUT1)

Chapter 3.indd 83 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces84

3.7 other dataFrame operatIons

In this section, we will learn more techniques and
functions that can be used to manipulate and analyse
data in a DataFrame.

3.7.1 Reshaping Data
The way a dataset is arranged into rows and columns is
referred to as the shape of data. Reshaping data refers
to the process of changing the shape of the dataset
to make it suitable for some analysis problems. The
example given in the below section explains the utility
of reshaping the data.

For reshaping data, two basic functions are available
in Pandas, pivot and pivot_table. This section covers
them in detail.
(A) Pivot
The pivot function is used to reshape and create a new
DataFrame from the original one. Consider the following
example of sales and profit data of four stores: S1, S2,
S3 and S4 for the years 2016, 2017 and 2018.

 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22 21 18 20 21
1 Zuhaire 1 20 17 22 24 19
2 Ashravy 1 23 19 20 15 22
3 Mishti 1 15 22 25 22 22

Example 3.1
>>> import pandas as pd

>>> data={'Store':['S1','S4','S3','S1','S2','S3
','S1','S2','S3'], 'Year':[2016,2016,2016,2017
,2017,2017,2018,2018,2018],

'Total_sales(Rs)':[12000,330000,420000,
20000,10000,450000,30000, 11000,89000],
'Total_profit(
Rs)':[1100,5500,21000,32000,9000,45000,3000,
1900,23000]
}

>>> df=pd.DataFrame(data)
>>> print(df)

 Store Year Total_sales(Rs) Total_profit(Rs)
0 S1 2016 12000 1100
1 S4 2016 330000 5500
2 S3 2016 420000 21000

Chapter 3.indd 84 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 85

3 S1 2017 20000 32000
4 S2 2017 10000 9000
5 S3 2017 450000 45000
6 S1 2018 30000 3000
7 S2 2018 11000 1900
8 S3 2018 89000 23000

Let us try to answer the following queries on the
above data.

1) What was the total sale of store S1 in all the years?
Python statements to perform this task will be
as follows:

 # will get the data related to store S1
>>> S1df = df[df.Store==’S1’]
#find the total of sales for Store S1
>>> S1df[‘Total_sales(Rs)’].sum()
62000

2) What is the maximum sale value by store S3 in
any year?

#will get the data related to store S3
>>> S3df = df[df.Store==’S3’]
#find the maximum sale for Store S3
>>> S3df[‘Total_sales(Rs)’].max()
450000

3) Which store had the maximum total sale in all
the years?

>>> S1df = df[df.Store=='S1']
>>> S2df=df[df.Store == 'S2']
>>> S3df = df[df.Store=='S3']
>>> S4df = df[df.Store=='S4']
>>> S1total = S1df['Total_sales(Rs)'].sum()
>>> S2total = S2df['Total_sales(Rs)'].sum()
 >>> S3total = S3df['Total_sales(Rs)'].sum()
 >>> S4total = S4df['Total_sales(Rs)'].sum()
 >>> max(S1total,S2total,S3total,S4total)
 959000

Notice that we have to slice the data corresponding to
a particular store and then answer the query. Now, let
us reshape the data using pivot and see the difference.

>>>
pivot1=df.pivot(index='Store',columns='Year',va
lues='Total_sales(Rs)')

Chapter 3.indd 85 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces86

Activity 3.6

Consider the data of
unit test marks given
at program 3.1, write
the python statements
to print name wise UT
marks in mathematics.

Here, Index specifies the columns that will be acting
as an index in the pivot table, columns specifies the
new columns for the pivoted data and values specifies
columns whose values will be displayed. In this
particular case, store names will act as index, year
will be the headers for columns and sales value will be
displayed as values of the pivot table.

>>> print(pivot1)

Year 2016 2017 2018
Store
S1 12000.0 20000.0 30000.0
S2 NaN 10000.0 11000.0
S3 420000.0 450000.0 89000.0
S4 330000.0 NaN NaN

As can be seen above, the value of Total_sales (Rs)
for every row in the original table has been transferred
to the new table: pivot1, where each row has data of a
store and each column has data of a year. Those cells in
the new pivot table which do not have a matching entry
in the original one are filled with NaN. For instance, we
did not have values corresponding to sales of Store S2
in 2016, thus the appropriate cell in pivot1 is filled with
NaN.

Now the python statements for the above queries will
be as follows:

1) What was the total sale of store S1 in all the years?
 >>> pivot1.loc[‘S1’].sum()

2) What is the maximum sale value by store S3 in
any year?

 >>> pivot1.loc[‘S3’].max()

3) Which store had the maximum total sale?
 >>> S1total = pivot1.loc['S1'].sum()
 >>> S2total = pivot1.loc['S2'].sum()
 >>> S3total = pivot1.loc['S3'].sum()
 >>> S4total = pivot1.loc['S4'].sum()
 >>> max(S1total,S2total,S3total,S4total)

We can notice that reshaping has transformed the
structure of the data, which makes it more readable
and easy to analyse the data.
(B) Pivoting by Multiple Columns
For pivoting by multiple columns, we need to specify
multiple column names in the values parameter of

Chapter 3.indd 86 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 87

pivot() function. If we omit the values parameter, it will
display the pivoting for all the numeric values.

>>> pivot2=df.pivot(index='Store',columns='Year
',values=['Total_sales(Rs)','Total_profit(Rs)'])

>>> print(pivot2)

 Total_sales(Rs) Total_profit(Rs)
Year 2016 2017 2018 2016 2017 2018
Store
S1 12000.0 20000.0 30000.0 1100.0 32000.0 3000.0
S2 NaN 10000.0 11000.0 NaN 9000.0 1900.0
S3 330000.0 NaN NaN 5500.0 NaN NaN

Let us consider another example, where suppose we
have stock data corresponding to a store as:

>>> data={'Item':['Pen','Pen','Pencil','Pencil'
,'Pen','Pen'],
'Color':['Red','Red','Black','Black','Blue','B
lue'],
'Price(Rs)':[10,25,7,5,50,20],
'Units_in_stock':[50,10,47,34,55,14]
}
>>> df=pd.DataFrame(data)
>>> print(df)

 Item Color Price(Rs) Units_in_stock
0 Pen Red 10 50
1 Pen Red 25 10
2 Pencil Black 7 47
3 Pencil Black 5 34
4 Pen Blue 50 55
5 Pen Blue 20 14

Now, let us assume, we have to reshape the above
table with Item as the index and Color as the column.
We will use pivot function as given below:
>>> pivot3=df.pivot(index='Item',columns='Color
',values='Units_in_stock')

But this statement results in an error: “ValueError:
Index contains duplicate entries, cannot reshape”. This
is because duplicate data can’t be reshaped using pivot
function. Hence, before calling the pivot() function, we
need to ensure that our data do not have rows with
duplicate values for the specified columns. If we can’t
ensure this, we may have to use pivot_table function
instead.

Chapter 3.indd 87 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces88

(C) Pivot Table
It works like a pivot function, but aggregates the values
from rows with duplicate entries for the specified
columns. In other words, we can use aggregate functions
like min, max, mean etc, wherever we have duplicate
entries. The default aggregate function is mean.

Syntax:
pandas.pivot_table(data, values=None,
index=None, columns=None, aggfunc='mean')

The parameter aggfunc can have values among sum,
max, min, len, np.mean, np.median.

We can apply index to multiple columns if we don't
have any unique column to act as index.

>>> df1 = df.pivot_
table(index=['Item','Color'])
>>> print(df1)
 Price(Rs) Units_in_stock
Item Color
Pen Blue 35.0 34.5
 Red 17.5 30.0
Pencil Black 6.0 40.5

Please note that mean has been used as the default
aggregate function. Price of the blue pen in the original
data is 50 and 20. Mean has been used as aggregate
and the price of the blue pen is 35 in df1.

We can use multiple aggregate functions on the
data. Below example shows the use of the sum, max
and np.mean function.

>>> pivot_table1=df.pivot_table(index='
Item',columns='Color',values='Units_in_
stock',aggfunc=[sum,max,np.mean])

>>> pivot_table1

 sum max mean
Color Black Blue Red Black Blue Red Black Blue Red
Item
Pen NaN 69.0 60.0 NaN 55.0 50.0 NaN 34.5 30.0
Pencil 81.0 NaN NaN 47.0 NaN NaN 40.5 NaN NaN

Pivoting can also be done on multiple columns.
Further, different aggregate functions can be applied on
different columns. The following example demonstrates
pivoting on two columns - Price(Rs) and Units_in_stock.
Also, the application of len() function on the column

Chapter 3.indd 88 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 89

Price(Rs) and mean() function of column Units_in_
stock is shown in the example. Note that the aggregate
function len returns the number of rows corresponding
to that entry.

>>> pivot_table1=df.pivot_table(index='Item'
,columns='Color',values=['Price(Rs)','Units_
in_stock'],aggfunc={"Price(Rs)":len,"Units_in_
stock":np.mean})

>>> pivot_table1
 Price(Rs) Units_in_stock
Color Black Blue Red Black Blue Red
Item
Pen NaN 2.0 2.0 NaN 34.5 30.0
Pencil 2.0 NaN NaN 40.5 NaN NaN

Program 3-11 Write the statement to print the maximum
price of pen of each color.

>>> dfpen=df[df.Item=='Pen']
>>> pivot_redpen=dfpen.pivot_table(index='Item'
,columns=['Color'],values=['Price(Rs)'],aggfun
c=[max])
>>> print(pivot_redpen)

 max
 Price(Rs)
Color Blue Red
Item
Pen 50 25

3.8 handlIng mIssIng values

As we know that a DataFrame can consist of many rows
(objects) where each row can have values for various
columns (attributes). If a value corresponding to a
column is not present, it is considered to be a missing
value. A missing value is denoted by NaN.

In the real world dataset, it is common for an object
to have some missing attributes. There may be several
reasons for that. In some cases, data was not collected
properly resulting in missing data e.g some people did
not fill all the fields while taking the survey. Sometimes,
some attributes are not relevant to all. For example, if
a person is unemployed then salary attribute will be
irrelevant and hence may not have been filled up.

notes

Chapter 3.indd 89 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces90

Missing values create a lot of problems during data
analysis and have to be handled properly. The two
most common strategies for handling missing values
explained in this section are:

i) drop the object having missing values,
ii) fill or estimate the missing value
Let us refer to the previous case study given at table

3.1. Suppose, the students have now appeared for
Unit Test 4 also. But, Raman could not appear for the
Science, Maths and English tests, and suppose there
is no possibility of a re-test. Therefore, marks obtained
by him corresponding to these subjects will be missing.
The dataset after Unit Test 4 is as shown at Table 3.2.
Note that the attributes ‘Science, ‘Maths’ and ‘English’
have missing values in Unit Test 4 for Raman.

Table 3.2 Case study data after UT4
Result

Name/
Subjects

Unit
Test

Maths Science S.St. Hindi Eng

Raman 1 22 21 18 20 21

Raman 2 21 20 17 22 24

Raman 3 14 19 15 24 23

Raman 4 19 18

Zuhaire 1 20 17 22 24 19

Zuhaire 2 23 15 21 25 15

Zuhaire 3 22 18 19 23 13

Zuhaire 4 19 20 17 19 16

Aashravy 1 23 19 20 15 22

Aashravy 2 24 22 24 17 21

Aashravy 3 12 25 19 21 23

Aashravy 4 15 20 20 20 17

Mishti 1 15 22 25 22 22

Mishti 2 18 21 25 24 23

Mishti 3 17 18 20 25 20

Mishti 4 14 20 19 20 18

To calculate the final result, teachers are asked to
submit the percentage of marks obtained by all students.
In the case of Raman, the Maths teacher decides to
compute the marks obtained in 3 tests and then find the
percentage of marks from the total score of 75 marks.
In a way, she decides to drop the marks of Unit Test 4.
However, the English teacher decides to give the same

notes

Chapter 3.indd 90 11/26/2020 12:46:04 PM

2021–22

Data HanDling using PanDas - ii 91

marks to Raman in the 4th test as scored in the 3rd
test. Science teacher decides to give Raman zero marks
in the 4th test and then computes the percentage of
marks obtained. Following sections explain the code
for checking missing values and the code for replacing
those missing values with appropriate values.

3.8.1 Checking Missing Values
Pandas provide a function isnull() to check whether any
value is missing or not in the DataFrame. This function
checks all attributes and returns True in case that
attribute has missing values, otherwise returns False.

The following code stores the data of marks of all
the Unit Tests in a DataFrame and checks whether the
DataFrame has missing values or not.

>>> marksUT = {

'Name':['Raman','Raman','Raman','Raman','Zuhaire','Zuhaire','Zuhaire'
,'Zuhaire','Ashravy','Ashravy','Ashravy','Ashravy','Mishti','Mishti',
'Mishti','Mishti'],

'UT':[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4],
'Maths':[22,21,14,np.NaN,20,23,22,19,23,24,12,15,15,18,17,14],
'Science':[21,20,19,np.NaN,17,15,18,20,19,22,25,20,22,21,18,20],

'S.St':[18,17,15,19,22,21,19,17,20,24,19,20,25,25,20,19],
'Hindi':[20,22,24,18,24,25,23,21, 15,17,21,20,22,24,25,20],
'Eng':[21,24,23,np.NaN,19,15,13,16,22,21,23,17,22,23,20,18] }

>>> df = pd.DataFrame(marksUT)
>>> print(df.isnull())

Output of the above code will be
 Name UT Maths Science S.St Hindi Eng
0 False False False False False False False
1 False False False False False False False
2 False False False False False False False
3 False False True True False False True
4 False False False False False False False
5 False False False False False False False
6 False False False False False False False
7 False False False False False False False
8 False False False False False False False
9 False False False False False False False
10 False False False False False False False
11 False False False False False False False
12 False False False False False False False
13 False False False False False False False
14 False False False False False False False
15 False False False False False False False

Chapter 3.indd 91 11/26/2020 12:46:04 PM

2021–22

InformatIcs PractIces92

One can check for each individual attribute also,
e.g. the following statement checks whether attribute
‘Science’ has a missing value or not. It returns True for
each row where there is a missing value for attribute
‘Science’, and False otherwise.

>>> print(df['Science'].isnull())
0 False
1 False
2 False
3 True
4 False
5 False
6 False
7 False
8 False
9 False
10 False
11 False
12 False
13 False
14 False
15 False
Name: Science, dtype: bool

To check whether a column (attribute) has a missing
value in the entire dataset, any() function is used. It
returns True in case of missing value else returns False.

>>> print(df.isnull().any())
Name False
UT False
Maths True
Science True
S.St False
Hindi False
Eng True
dtype: bool

The function any() can be used for a particular
attribute also. The following statements) returns True
in case an attribute has a missing value else it returns
False.

>>> print(df['Science'].isnull().any())
True

notes

Chapter 3.indd 92 11/26/2020 12:46:05 PM

2021–22

Data HanDling using PanDas - ii 93

>>> print(df['Hindi'].isnull().any())
False

To find the number of NaN values corresponding to
each attribute, one can use the sum() function along
with isnull() function, as shown below:

>>> print(df.isnull().sum())
Name 0
UT 0
Maths 1
Science 1
S.St 0
Hindi 0
Eng 1
dtype: int64

To find the total number of NaN in the whole dataset,
one can use df.isnull().sum().sum().

>>> print(df.isnull().sum().sum())
3

Program 3-12 Write a program to find the percentage of
marks scored by Raman in hindi.

>>> dfRaman = df[df['Name']=='Raman']
>>> print('Marks Scored by Raman \n\n',dfRaman)

Marks Scored by Raman
 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22.0 21.0 18 20 21.0
1 Raman 2 21.0 20.0 17 22 24.0
2 Raman 3 14.0 19.0 15 24 23.0
3 Raman 4 NaN NaN 19 18 NaN

>>> dfHindi = dfRaman['Hindi']
>>> print("Marks Scored by Raman in Hindi
\n\n",dfHindi)

Marks Scored by Raman in Hindi
0 20
1 22
2 24
3 18
Name: Hindi, dtype: int64

>>> row = len(dfHindi) # Number of Unit Tests
held. Here row will be 4

notes

Chapter 3.indd 93 11/26/2020 12:46:05 PM

2021–22

InformatIcs PractIces94

>>> print("Percentage of Marks Scored by Raman
in Hindi\n\n",(dfHindi.sum()*100)/(25*row),"%")

denominator in the above formula represents
the aggregate of marks of all tests. Here row
is 4 tests and 25 is maximum marks for one test

Percentage of Marks Scored by Raman in Hindi
84.0 %

Program 3-13 Write a python program to find the
percentage of marks obtained by Raman
in Maths subject.

>>> dfMaths = dfRaman['Maths']
>>> print("Marks Scored by Raman in Maths
\n\n",dfMaths)
Marks Scored by Raman in Maths
0 22.0
1 21.0
2 14.0
3 NaN
Name: Maths, dtype: float64

>>> row = len(dfMaths) # here, row will be 4,
the number of Unit Tests
>>> print("Percentage of Marks Scored by Raman
in Maths\n\n", dfMaths.sum()*100/(25*row),"%")

Percentage of Marks Scored by Raman in Maths
57%
Here, notice that Raman was absent in Unit Test 4 in

Maths Subject. While computing the percentage, marks
of the fourth test have been considered as 0.

3.8.2 Dropping Missing Values
Missing values can be handled by either dropping the
entire row having missing value or replacing it with
appropriate value.

Dropping will remove the entire row (object) having
the missing value(s). This strategy reduces the size of
the dataset used in data analysis, hence should be used
in case of missing values on few objects. The dropna()
function can be used to drop an entire row from the
DataFrame. For example, calling dropna() function on

notes

Chapter 3.indd 94 11/26/2020 12:46:05 PM

2021–22

Data HanDling using PanDas - ii 95

the previous example will remove the 4th row having
NaN value.

>>> df1 = df.dropna()
>>> print(df1)
 Name UT Maths Science S.St Hindi Eng
0 Raman 1 22.0 21.0 18 20 21.0
1 Raman 2 21.0 20.0 17 22 24.0
2 Raman 3 14.0 19.0 15 24 23.0
4 Zuhaire 1 20.0 17.0 22 24 19.0
5 Zuhaire 2 23.0 15.0 21 25 15.0
6 Zuhaire 3 22.0 18.0 19 23 13.0
7 Zuhaire 4 19.0 20.0 17 21 16.0
8 Ashravy 1 23.0 19.0 20 15 22.0
9 Ashravy 2 24.0 22.0 24 17 21.0
10 Ashravy 3 12.0 25.0 19 21 23.0
11 Ashravy 4 15.0 20.0 20 20 17.0
12 Mishti 1 15.0 22.0 25 22 22.0
13 Mishti 2 18.0 21.0 25 24 23.0
14 Mishti 3 17.0 18.0 20 25 20.0
15 Mishti 4 14.0 20.0 19 20 18.0

 Now, let us consider the following code:
marks obtained by Raman in all the unit tests
>>> dfRaman=df[df.Name=='Raman']

inplace=true makes changes in the #original
DataFrame i.e. dfRaman #here
>>> dfRaman.dropna(inplace=True,how='any')
>>> dfMaths = dfRaman['Maths'] # get the marks
scored in Maths
>>> print("\nMarks Scored by Raman in Maths
\n",dfMaths)

Marks Scored by Raman in Maths
0 22.0
1 21.0
2 14.0
3 NaN
Name: Maths, dtype: float64

>>> row = len(dfMaths)
>>> print("\nPercentage of Marks Scored by
Raman in Maths\n")
>>> print(dfMaths.sum()*100/(25*row),"%")

Chapter 3.indd 95 11/26/2020 12:46:05 PM

2021–22

InformatIcs PractIces96

Percentage of Marks Scored by Raman in Maths
76.0 %

Note that the number of rows in dfRaman is 3 after
using dropna. Hence percentage is computed from
marks obtained in 3 Unit Tests.

3.8.3 Estimating Missing Values
Missing values can be filled by using estimations or
approximations e.g a value just before (or after) the
missing value, average/minimum/maximum of the
values of that attribute, etc. In some cases, missing
values are replaced by zeros (or ones).

The fillna(num) function can be used to replace
missing value(s) by the value specified in num. For
example, fillna(0) replaces missing value by 0. Similarly
fillna(1) replaces missing value by 1. Following code
replaces missing values by 0 and computes the
percentage of marks scored by Raman in Science.

#Marks Scored by Raman in all the subjects
across the tests

>>> dfRaman = df.loc[df['Name']=='Raman']

>>> (row,col) = dfRaman.shape

>>> dfScience = dfRaman.loc[:,'Science']

>>> print("Marks Scored by Raman in Science
\n\n",dfScience)

Marks Scored by Raman in Science

0 21.0

1 20.0

2 19.0

3 NaN

Name: Science, dtype: float64

>>> dfFillZeroScience = dfScience.fillna(0)

>>> print('\nMarks Scored by Raman in Science
with Missing Values Replaced with Zero\
n',dfFillZeroScience)

Marks Scored by Raman in Science with Missing
Values Replaced with Zero

0 21.0
1 20.0

notes

Chapter 3.indd 96 11/26/2020 12:46:05 PM

2021–22

Data HanDling using PanDas - ii 97

2 19.0
3 0.0
Name: Science, dtype: float64

>>> print("Percentage of Marks Scored by Raman
in Science\n\n",dfFillZeroScience.sum()*100/
(25*row),"%")

Percentage of Marks Scored by Raman in Science
60.0 %
df.fillna(method='pad') replaces the missing

value by the value before the missing value while
df.fillna(method='bfill') replaces the missing value by the
value after the missing value. Following code replaces
the missing value in Unit Test 4 of English test by the
marks of Unit Test 3 and then computes the percentage
of marks obtained by Raman.

>>> dfEng = dfRaman.loc[:,'Eng']
>>> print("Marks Scored by Raman in English
\n\n",dfEng)

Marks Scored by Raman in English
0 21.0
1 24.0
2 23.0
3 NaN
Name: Eng, dtype: float64

>>> dfFillPadEng = dfEng.fillna(method='pad')
>>> print('\nMarks Scored by Raman in English
with Missing Values Replaced by Previous Test
Marks\n',dfFillPadEng)

Marks Scored by Raman in English with Missing
Values Replaced by Previous Test Marks

0 21.0
1 24.0
2 23.0
3 23.0
Name: Eng, dtype: float64
>>> print("Percentage of Marks Scored by Raman
in English\n\n")
>>> print(dfFillPadEng.sum()*100/(25*row),"%")

Percentage of Marks Scored by Raman in English
91.0 %
In this section, we have discussed various ways

of handling missing values. Missing value is loss of

notes

Chapter 3.indd 97 11/26/2020 12:46:05 PM

2021–22

InformatIcs PractIces98

information and replacing missing values by some
estimation will surely change the dataset. In all cases,
data analysis results will not be actual results but will
be a good approximation of actual results.

3.9 Import and export oF data Between pandas
and mYsQl

So far, we have directly entered data and created
a DataFrame and learned how to analyse data in a
DataFrame. However, in actual scenarios, data need
not be typed or copy pasted everytime. Rather, data is
available most of the time in a file (text or csv) or in
a database. Thus, in real-world scenarios, we will be
required to bring data directly from a database and load
to a DataFrame. This is called importing data from a
database. Likewise, after analysis, we will be required to
store data back to a database. This is called exporting
data to a database.

Data from DataFrame can be read from and written
to MySQL database. To do this, a connection is required
with the MySQL database using the pymysql database
driver. And for this, the driver should be installed in the
python environment using the following command:

pip install pymysql

sqlalchemy is a library used to interact with the
MySQL database by providing the required credentials.
This library can be installed using the following
command:

pip install sqlalchemy

Once it is installed, sqlalchemy provides a function
create_engine() that enables this connection to be
established. The string inside the function is known as
connection string. The connection string is composed of
multiple parameters like the name of the database with
which we want to establish the connection, username,
password, host, port number and finally the name of
the database. And, this function returns an engine
object based on this connection string. The syntax for
the same is discussed below:

engine=create_engine('driver://
username:password@host:port/name_of_
database',index=false)

notes

Chapter 3.indd 98 11/26/2020 12:46:05 PM

2021–22

Data HanDling using PanDas - ii 99

 where,
Driver = mysql+pymysql
username=User name of the mysql (normally it is root)
password= Password of the MySql
port = usually we connect to localhost with port number
3306 (Default port number)
Name of the Database = Your database

In the following subsections, importing and exporting
data between Pandas and MySQL applications are
demonstrated. For this, we will use the same database
CARSHOWROOM and Table INVENTORY created in
Chapter 1 of this book.
mysql> use CARSHOWROOM ;
Database changed
mysql> select * from INVENTORY;
+-------+--------+-----------+-----------+-----------------+----------+
| CarId | CarName| Price | Model | YearManufacture | Fueltype |
+-------+--------+-----------+-----------+-----------------+----------+
D001	Car1	582613.00	LXI	2017	Petrol
D002	Car1	673112.00	VXI	2018	Petrol
B001	Car2	567031.00	Sigma1.2	2019	Petrol
B002	Car2	647858.00	Delta1.2	2018	Petrol
E001	Car3	355205.00	5 STR STD	2017	CNG
E002	Car3	654914.00	CARE	2018	CNG
S001	Car4	514000.00	LXI	2017	Petrol
S002	Car4	614000.00	VXI	2018	Petrol
+-------+--------+-----------+-----------+-----------------+----------+
8 rows in set (0.00 sec)

3.9.1 Importing Data from MySQL to Pandas
Importing data from MySQL to pandas basically refers
to the process of reading a table from MySQL database
and loading it to a pandas DataFrame. After establishing
the connection, in order to fetch data from the table of
the database we have the following three functions:

1) pandas.read_sql_query(query,sql_conn)

It is used to read an sql query (query) into a
DataFrame using the connection identifier (sql_
conn) returned from the create_engine ().

2) pandas.read_sql_table(table_name,sql_conn)

It is used to read an sql table (table_name) into a
DataFrame using the connection identifier (sql_
conn).

3) pandas.read_sql(sql, sql_conn)

It is used to read either an sql query or an sql
table (sql) into a DataFrame using the connection
identifier (sql_conn).

Chapter 3.indd 99 11/26/2020 12:46:05 PM

2021–22

InformatIcs PractIces100

3.9.2 Exporting Data from Pandas to MySQL
Exporting data from Pandas to MySQL basically refers
to the process of writing a pandas DataFrame to a table
of MySQL database. For this purpose, we have the
following function:

pandas.DataFrame.to_sql(table,sql_conn,if_
exists=”fail”,index=False/True)

• Table specifies the name of the table in which we
want to create or append DataFrame values. It is
used to write the specified DataFrame to the table
the connection identifier (sql_conn) returned from the
create_engine ().

• The parameter if_exists specifies “the way data from
the DataFrame should be entered in the table. It
can have the following three values: “fail”, “replace”,
“append”.

 ο “fail” is the default value that indicates a
ValueError if the table already exists in the
database.

 ο “replace” specifies that the previous content of
the table should be updated by the contents of
the DataFrame.

 ο “append” specifies that the contents of the
DataFrame should be appended to the existing
table and when updated the format must be the
same (column name sequences).

>>> import pandas as pd
>>> import pymysql as py
>>> import sqlalchemy
>>> engine=create_engine('mysql+pymysql://
root:smsmb@localhost:3306/CARSHOWROOM')
>>> df = pd.read_sql_query('SELECT * FROM
INVENTORY', engine)
>>> print(df)

 CarId CarName Price Model YearManufacture Fueltype
0 D001 Car1 582613.00 LXI 2017 Petrol
1 D002 Car1 673112.00 VXI 2018 Petrol
2 B001 Car2 567031.00 Sigma1.2 2019 Petrol
3 B002 Car2 647858.00 Delta1.2 2018 Petrol
4 E001 Car3 355205.00 5STR STD 2017 CNG
5 E002 Car3 654914.00 CARE 2018 CNG
6 S001 Car4 514000.00 LXI 2017 Petrol
7 S002 Car4 614000.00 VXI 2018`` Petrol

Chapter 3.indd 100 11/26/2020 12:46:05 PM

2021–22

Data HanDling using PanDas - ii 101

• Index — By default index is True means DataFrame
index will be copied to MySQL table. If False, then it
will ignore the DataFrame indexing.
#Code to write DataFrame df to database

>>> import pandas as pd
>>> import pymysql as py
>>> import sqlalchemy
>>> engine=create_engine('mysql+pymysql://
root:smsmb@localhost:3306/CARSHOWROOM')
>>> data={
'ShowRoomId':[1,2,3,4,5],
‘Location':[‘Delhi','Bangalore','Mumbai','Chand
igarh','Kerala']}

>>> df=pd.DataFrame(data)
>>> df.to_sql('showroom_info',engine,if_
exists="replace",index=False)
After running this python script, a mysql table

with the name “showroom_info” will be created in the
database.

Summary

• Descriptive Statistics are used to quantitatively
summarise the given data.

• Pandas provide many statistical functions for
analysis of data. Some of the functions are max(),
min(), mean(), median(), mode(), std(), var() etc.

• Sorting is used to arrange data in a specified
order, i.e. either ascending or descending.

• Indexes or labels of a row or column can be
changed in a DataFrame. This process is known
as Altering the index. Two functions reset_index
and set_index are used for that purpose.

• Missing values are a hindrance in data analysis
and must be handled properly.

• There are primarily two main strategies for
handling missing data. Either the row (or column)
having missing value is removed completely from
analysis or missing value is replaced by some

notes

Chapter 3.indd 101 11/26/2020 12:46:05 PM

2021–22

InformatIcs PractIces102

appropriate value (which may be zero or one or
average etc.)

• Process of changing the structure of the DataFrame
is known as Reshaping. Pandas provide two basic
functions for this, pivot() and pivot_table().

• pymysql and sqlalchemy are two mandatory
libraries for facilitating import and export of data
between Pandas and MySQL. Before import and
export, a connection needs to be established from
python script to MySQL database.

• Importing data from MySQL to Panda refers to
the process of fetching data from a MySQL table
or database to a pandas DataFrame.

• Exporting data from Pandas to MySQL refers to the
process of storing data from a pandas DataFrame
to a MySQL table or database.

1. Write the statement to install the python connector to
connect MySQL i.e. pymysql.

2. Explain the difference between pivot() and pivot_
table() function?

3. What is sqlalchemy?
4. Can you sort a DataFrame with respect to multiple

columns?
5. What are missing values? What are the strategies to

handle them?
6. Define the following terms: Median, Standard

Deviation and variance.
7. What do you understand by the term MODE? Name

the function which is used to calculate it.
8. Write the purpose of Data aggregation.
9. Explain the concept of GROUP BY with help on an

example.
10. Write the steps required to read data from a MySQL

database to a DataFrame.
11. Explain the importance of reshaping of data with an

example.

Exercise

notes

Chapter 3.indd 102 11/26/2020 12:46:05 PM

2021–22

Data HanDling using PanDas - ii 103

12. Why estimation is an important concept in
data analysis?

13. Assuming the given table: Product. Write the python
code for the following:
Item Company Rupees USD

TV LG 12000 700

TV VIDEOCON 10000 650

TV LG 15000 800

AC SONY 14000 750

a) To create the data frame for the above table.
b) To add the new rows in the data frame.
c) To display the maximum price of LG TV.
d) To display the Sum of all products.
e) To display the median of the USD of Sony

products.
f) To sort the data according to the Rupees and

transfer the data to MySQL.
g) To transfer the new dataframe into the MySQL

with new values.
14. Write the python statement for the following question

on the basis of given dataset:

a) To create the above DataFrame.
b) To print the Degree and maximum marks in each

stream.
c) To fill the NaN with 76.
d) To set the index to Name.
e) To display the name and degree wise average

marks of each student.
f) To count the number of students in MBA.
g) To print the mode marks BCA.

notes

Chapter 3.indd 103 11/26/2020 12:46:05 PM

2021–22

InformatIcs PractIces104

solved case studY Based on open datasets
UCI dataset is a collection of open datasets, available
to the public for experimentation and research
purposes. ‘auto-mpg’ is one such open dataset.

It contains data related to fuel consumption by
automobiles in a city. Consumption is measured in
miles per gallon (mpg), hence the name of the dataset
is auto-mpg. The data has 398 rows (also known as
items or instances or objects) and nine columns
(also known as attributes).

The attributes are: mpg, cylinders, displacement,
horsepower, weight, acceleration, model year, origin,
car name. Three attributes, cylinders, model year
and origin have categorical values, car name is a
string with a unique value for every row, while the
remaining five attributes have numeric value.

The data has been downloaded from the UCI data
repository available at http://archive.ics.uci.edu/
ml/machine-learning-databases/auto-mpg/.
Following are the exercises to analyse the data.
1) Load auto-mpg.data into a DataFrame autodf.
2) Give description of the generated DataFrame

autodf.
3) Display the first 10 rows of the DataFrame

autodf.
4) Find the attributes which have missing values.

Handle the missing values using following two
ways:
i. Replace the missing values by a value before

that.
ii. Remove the rows having missing values from

the original dataset
5) Print the details of the car which gave the

maximum mileage.
6) Find the average displacement of the car given

the number of cylinders.
7) What is the average number of cylinders in a car?
8) Determine the no. of cars with weight greater

than the average weight.

notes

Chapter 3.indd 104 11/26/2020 12:46:05 PM

2021–22

