UNIT 5: FUNDAMENTALS TO JAVA PROGRAMMING

Chapter -1 Understand Integrated Development Environment (NETBEANS)

Learning Objectives

. Identify, name and state the usage of the different components of the
NetBeans IDE.

. Identify and name the various methods and properties associated with
the various form controls

Introduction

In our day to day life, we have to give information innumerable times like fill up bank deposit slips
to deposit money or type in username and password to sign in to our mail account and many more.
Forms are means to accept data (input) from us and respond as soon as we perform an actionlike
clicking on a button or submitting the form. This chapter deals with teaching the basic process of
designing forms in Netbeans and using them to perform simple manipulations using Java.

NetBeans ID

NetBeans IDE is used to create java applications very easily using the efficient GUI builder. tallows
us to develop applications by dragging and positioning GUI components from a palette onto a
container. The GUI builder automatically takes care of the correct spacing and alignment of the
different components relative to each other. Let us go through the different components of the
NetBeans IDE (Refer to Fig 5.1):

0 Bock m - -
’Elo f»” Yeve Newgete Jource Fefgotot Bun Debug Profie Verssreg Fooks Wndow Heip ‘
= R
‘ | o W (0 otk - G P B = !
|
l L : Saivies | [StetPags @/ [Saepalwva = =110 | Pasems x|
g Pack *| [fowe [Dsin) | B3 IR AL rer——
a Tource a0 J o
) beak ¢ e the Cormeroe Mode duton (n e mobar) 1 ertabinh 8 correcton betven e et
B = i A g0 Bt w Chech Bae
Ll Fuxmopied ey - Fada Rution 5 tumen Group
D Bxawpiel jese B2l Comto Sac o Lt
b Daanpled jacy >,
D Expiet hees s Batiaed [Jhutton] - PFropersen i
M M gres ol L — I
Frogartes | Binding Evanty
. Rarsgebet iimapetior 4 W P re
S Fow Evpwpie] 2
B Other Components P amonc
= DFrawe] =0 Buttanl
B Butoe] [Eotion)
foreground
D st ficiar) The Soreground oolor of e
b | ey
f
Jurst Tont Anassta | Cwsput ¥ Tass i
|E
=2
\'4 v Y
Inspector Window Design Area Properties Window Palette

Figure 5.1 NetBeans IDE

1. Title Bar

2. Menu Bar with pull down menus

3. Toolbars

4. GUI builder: It is an area to place components on the form visually. There are two views of
the GUI builder- the Design Viewand the Source View. We can switch over from one view
to another by simply clicking on the source and design tabs directly above the Design Are a.

5. Palette: Palette contains controls or components used to create GUl applications.

6. Inspector Window: This window is used to display a hierarchy of all the components or
controls placed on the current form.

7. Properties Window: Using this window we can make changes in the properties of currently
selected control on the form.

8. Code Editor Window: - It is the area where we write code for our java application.

Components

COMPONENTS (ALSO known as "widgets") are the basic interface elements the user interacts
with: jlabels, jbuttons, jtextfields etc. Components are placed on a container (like the jFrame).
There are two types of controls (Refer to Figure 5.2):

. Parent or container controls: They act as a background for other controls. For
example-Frame. When we delete a parent control, all its child controls get deleted.
When we move a parent control all its child controls also move along with it.

. Child controls: controls placed inside a container control are called child
controls. For example-Text Field, Label, Button etc.

| Torml.java-Pr. Palette " x
= Swing Lontamers
L Panel | Tabted Pane
| 3L spi pares e Scrol Pane .«——— Parent or container controls
Tool Dar 2 Desitop Pane
[internal Frame % | Lavered Pane
Swing Controls
e Label L Dtn
N Toggle urton v Check Do
&~ feado Button 7 Button Group
. Comho Box st
Texl Fekd [Texl Ares .
NI Sorol Bae G i <——— Child controls
L Progress Dar il Formatted |ield

< Paseword Fedd U3 Spiner

Separator 1| Toxt Pane
|5 Edior Pare O Tree
Lx Table

Figure 5.2 Parent and Child controls

Creating a New Project

The steps to create a newproject are:

1. Select New Project fromthe File menu. You can also click the New Project
button in the IDE toolbar.

2. Inthe Categories pane, select the General node. In the Projects pane, choose
the Java Application type. Click the Next button.

3. Enter the name of the project in the Project Name field and specify the project
location. Do not create a Main class here.

4. Click the Finish button.

Let us recap the relation between a Project, Form and Components. Each application is treated as
a Project in NetBeans and each project can have one or multiple forms and this fact is clear from
the Projects window as shown in Figure 5.3.

Project Name<« = Book A
=) Sowrce Packages
=] book
~ L Examplel.java
Multiple F £ Example2.java
ultiple Forms . .
under onpe Project €—1——< ED Example3.java
Ll Exampled.java
£ ExampleS,java
~ o Main.java
+- 1) Test Packages v

Figure 5.3 Project Window Showing Multiple Forms

Further each form can have one or more elements - some of which may be visible and some
invisible. The visible components are all shown under the Frame Component and the non -visible
components are part of other components.

We use the drag and drop feature of NetBeans to place components on the form to design an
effective interface for our applications. The first step that we undertook while designing our
applications was adding a new jFrame form. The jFrame is a window with title, border, (optional)
menu bar and is used to contain all other components placed by the user on the form. Some ofthe
properties of the jFrame form are defaultCloseOperation and Title(Refer Figure 5.4).

Property Description

defaultCloseOperation Sets action to be performed when the user
attempts to close the form.

Title Sets the text to be displayed in the Title bar of
the form window.

Figure 5.4 Properties of the jFrame Form

Any component of GUI front-end (the formitself and the swing containers and controls placed in
the form) of an application is an object. Each of these objects belongs to its corresponding class
predefined in Java. For example, a formis an object of JFrame class, all the textfields are objects
of JTextField class, and so on. Each object has some properties, methods, and events associated
with it using which you can control the object's appearance and behaviour.

Properties of an object are used to specify its appearance on the form. For example, to set the
background colour of a textfield you change its background property; to set its font you change
its font property; and so on.

Methods are used to perform some action on the object. For example to display somethingin a
textfield you can use its setText() method, to extract the contents of a textfield you can use its
getText() method. Methods can be divided into two categories- getters and setters.

. Getters are the methods which extract some information from the object and return it
to the program. Getters start with the word get. Examples of getters are: getText(),
getForeground(), getModel(), isEditable etc.

. Setters are the methods which set some properties of the object so that the object's
appearance changes. Setters start with the word set. Examples of setters are:
setText(), setForground(), setModel() etc.

Events are the actions which are performed on controls. Examples of events are:

mouseClick, mouseMoved keyPressed etc. When the user performs any action on a control,
an event happens and that event invokes (sends a call to) the corresponding part of the code
and the application behaves accordingly.

After setting the properties of the jFrame we can start placing components like jButton on the
jFrame form. A button is a component that the user presses or pushes to trigger a specific action.
When the user clicks on the button at runtime, the code associated with the click action gets
executed. The various methods and properties associated with the jButton are summarized in
Figure 5.5.

Property Description

Background Sets the background color.

Enabled Contains enabled state of component - true if enabled
else false.

Font Sets the font.

Foreground Sets the foreground color.

horizontal alignment Sets the horizontal alignment of text displayed on the
button.

Label Sets the display text.

Text Sets the display text

Method Description

getText() Retrieves the text typed in jButton.

String result=<button-name>.getText();

setEnabled

Enables or disables the button.
<button-name>.setEnabled(boolean b);

setText()

Changes the display text at runtime.

<button-name>.setText(String text);

setVisible

Makes the component visible or invisible - true to make the
component visible; false to make it invisible.

<button-name>.setVisible(boolean aFlag);

Figure 5.5 Properties and Methods of the jButton

We developed simple real life applications wherein on the click of the button we accepted the data
fromthe user in the jTextField and after processing the data the result was displayed inajTextField
or a jLabel. [TextField allows editing/displaying of a single line of text. jTextField is an input area
where the user can type in characters whereas a jLabel provides text instructions or information.
displays a single line of read-only text, an image or both text and image. The various methodsand
properties associated with the jTextField and jLabel are summarized in Figure 5.6 and 5.7

respectively.
Property Description
Background Sets the background color.
Border Sets the type of border that will surround the text field.
editable If set true user can edit textfield. Default is true.
enabled Contains enabled state of component- True if enabled else
false.
font Sets the font.
foreground Sets the foreground color.

horizontalAlignment

Sets the horizontal alignment of text displayed in the
textField.

text Sets the display text

toolTipText Sets the text that will appear when cursor moves over the
component.

Method Description

getText() Retrieves the textin typed in jTextField.

String result=<textfield-name>.getText();

isEditable() Returns true if the component is editable else returns false.

boolean b=<textfield-name>.isEditable();

isEnabled() Returns true if the component is enabled else returns false.

boolean b =<textfield-name>.isEnabled();

setEditable Sets whether the user can edit the text in the textField. true
if editable else false.

<textfield-name>.setEditable(boolean b);

setText() Changes the display text at runtime.

<textfield-name>.setText(String t);

setVisible() Makes the component visible or invisible - true to make the
component visible; false to make it invisible.

<textfield-name>.setVisible(boolean b);

Figure 5.6 Properties and Methods of the jTextField

Property Description

background Sets the background color.

enabled Contains enabled state of component- true if enabled else
false.

font Sets the font.

foreground Sets the foreground color.

horizontalAlignment Sets the horizontal alignment of text displayed in the
component.

text Sets the display text

Method Description

getText() Retrieves the text in typed in jLabel.

String result=<label-name>.getText();

isEnabled() Returns true if the component is enabled,else returns false.

boolean b=<label-name>.isEnabled();

setText() Changes the display text at runtime.

<label-name>.setText(String t);

setVisible() Makes the component visible or invisible - true to make the
component visible; false to make it invisible.

<label-name>.setVisible(boolean b);

Figure 5.7 Properties and Methods of the jLabel

The Text Area component allows us to accept multiline input from the user or display multiple lines
of information. This component automatically adds vertical or horizontal scroll bars as and when
required during run time. The various methods and properties associated with the jTextArea are
summarized in Figure 5.8.

Property Description

background Sets the background color.

columns Sets number of columns preferred for display.

editable If set true user can edit textfield. Default is true.

enabled Contains enabled state of component- true if enabled else
false.

font Sets the font.

foreground Sets the foreground color.

lineWrap Indicates whether line of text should wrap in case it exceeds
allocated width.(Default is false)

rows Sets number of rows preferred for display.

text Sets the display text

wrapStyleWord

Sends word to next line in case lineWrap is true and it
results in breaking of a word, when lines are wrapped.

Method Description

append() Adds data at the end.

<textarea-name>.append(String str);

getText() Retrieves the text in typed in jTextArea.

String str = <textarea-name>.getText();

isEditable() Returns true if the component is editable else returns false.

boolean b =<textarea-name>.isEditable();

isEnabled() Returns true if the component is enabled, else returns false.

boolean b =<textarea-name>.isEnabled();

setText() Changes the display text at runtime.

<textarea-name>.setText(String t);

Figure 5.8 Properties and Methods of the jTextArea

The jPassword component is used to enter confidential input like passwords which are single line.
We can suppress the display of input as this component allows us to input confidential information
like passwords. Each character entered can be replaced by an echo character. By default, the echo
character is the asterisk, *. The properties of jPassword are summarized below:

Property Description

background Sets the background color.

font Sets the font.

foreground Sets the foreground color.

text Sets the display text

echoChar Sets the character that will be displayed instead of text.

Figure 5.9 Properties of jPassword

The radio buttons are used to provide the user several choices and allow him to select one ofthe
choices (the radio buttons belong to a group allowing the user to select single option). But radio
buttons occupy a lot of space.

Thus, in case of too many options we can use Combo boxes as they help save space and are
less cumbersome to design as compared to radio button. We can use check box and list when
we want to display multiple options like selecting favourite sports or ordering multiple food items

in a restaurant.

The list is a preferred option over check box in situations wherever multiple options are required
to be selected from a large number of known set of options as they help save space and are
less cumbersome to design as compared to check boxes. The properties and methods of
jRadioButton are summarized below:.

Property Description

background Sets the background color.

buttonGroup ﬁgﬁ)crige;s the name of the group of button to which the jRadioButton

enabled Contains enabled state of component -true if enabled else false.
font Sets the font.

foreground Sets the foreground color.

label Sets the display text.

text Sets the display text.

Selected Sets the button as selected, if set to true, default is false.
Method Description

getText() Retrieves the text displayed by radio button.

String str = <radiobutton-name>.getText();

isSelected() Returns true if the component is checked else returns
false.

boolean b = <radiobutton-name>.isSelected();

setText() Changes the display text at runtime.

<radiobutton-name>.setText(String t);

setSelected() Checks(true) or unchecks the radio button.

<radiobutton-name>.setSelected(boolean b);

Figure 5.10 Properties and methods of the jRadioButton

jCheckBox is a small box like component that is either marked or unmarked. When it is clicked,
it changes from checked to unchecked or vice versa automatically. The properties and methods
of [CheckBox are summarized below:

Property Description

background Sets the background color.

buttonGroup _Specifies the name of the group of button to which the
jCheckBox belongs.

font Sets the font.

foreground Sets the foreground color.

label Sets the display text.

text Sets the display text

selected Sets the check box as selected if set to true, default is false.

Method Description

getText() Retrieves the text typed in

String str = <checkbox-name>.getText();

isSelected() Returns true if the component is checked else returns false.
boolean b =<checkbox-name>.isSelected();

setText() Changes the display text at runtime.
<checkbox-name>.setText(String t);

setSelected() Checks(true) or unchecks the checkbox.
<checkbox-name>.setSelected(boolean b);

Figure 5.11 Properties and methods of the [CheckBox

jComboBoxis like a drop down box - you can click a drop-down arrow and select an option from
a list whereas jList provides a scrollable set of items from which one or more may be selected.
The properties and methods of jComboBox and jList are summarized below:

Property Description

background Sets the background color.

buttongroup Specifies the name of the group of button to which the jComboBox
belongs.

editable If set true user can edit ComboBox. Default is true.

enabled Contains enabled state of component- True if enabled else false.

font Sets the font.

foreground

Sets the foreground color.

model

Contains the values to be displayed in the combobox.

text

Sets the display text

selectedIndex

Sets the index number of the element which should be selected by
default.

selectedltem

Sets the selected itemin the combobox. selectedltem and
selectedIndex are in synchronization with each other.

Method

Description

getSelectedlitem()

Retrieves the selected item.
Objectresult =
<combobox-name>.getSelectedltem();

getSelectedindex() Retrieves the index of the selected item.

intresult =
<combobox-name>.getSelectedIindex();

setModel()

Sets the data model that the combo box uses to get its list
of elements.
<combobox-name>.setModel

(ComboBoxModel aModel);

Figure 5.12 Properties and methods of the jComboBox

Property Description

background Sets the background color.

enabled Contains enabled state of component- true if enabled else
false.

font Sets the font.

foreground Sets the foreground color.

model Contains the values to be displayed in the list.

selectedIndex

Contains the indexvalue of selected option of the control.

selectionMode

Describes the mode for selecting values.
- SINGLE (List box allows single selection only)

- SINGLE_INTERVAL (List box allows single continuous
selection of options using shift key of keyboard)

- MULTIPLE_INTERVAL (List box allows
multiple selections of options using ctrl key of keyboard)

Method

Description

getSelectedValue()

Returns the selected value when only a single item is
selected, if multiple items are selected then returns first
selected value. Returns null in case no item selected

Object result=
<list-name>.getSelectedValue();

isSelectedIindex()

Returns true if specified indexis selected.

boolean b =
<list-name>.isSelectedIndex(int index);

Figure 5.13 Properties and methods of the jList

We use JOptionPane when we want to request information from the user, display informationto

the user or a combination of both. It requires an import statement at the top of the program.

import javax.swing.JOptionPane;

OR

import javax.swing.*

Either of them is acceptable. The difference is that the latter will import the entire library as

denoted by the star whereas the first statement will just import the JOptionPane library.

Method

Description

showMessageDialog()

Shows a one-button, modal dialog boxthat gives the user
some information.

Example :

JOptionPane.showMessageDialog(this,"Java and
NetBeans");

howConfirmDialog() Shows a three-button modal dialog that asks the user a
guestion. User can respond by pressing any of the suitable
buttons.

Example:
Confirm=
JOptionPane.showConfirmDialog(null," quit?")

howlnputDialog() Shows a modal dialog that prompts the user for input. It
prompts the user with a text box in which the user can enterthe
relevant input.

Example :
name=
JOptionPane.showlinputDialog(this," Name:");

Figure 5.14 Properties and methods of the JOptionPane

Chapter-2JAVA Programming

e Introduction to Object Oriented Programming

e Tounderstand the need and usage of variables

e Tounderstand various data types (primitive) and purpose of each data type

e Tounderstand usage of operators (assignment, arithmetic, relational, logical,
bitwise)

e Tounderstand howto attach a code with components like jButton, jLabel,
jTextField and create a simple application on JFrame

e Tounderstand the use of various components like jTextarea, jRadiobutton,
jCheckbox, jPasswordField,jListBox, jComboBox, JTable,JOptionPane, JPanel

e Tounderstand when to use selection statements (if, if else and switch case)

Object Oriented Programming

Object Oriented Programming follows bottom up approach in program design and emphasizes on
safety and security of data. It helps in wrapping up of data and methods together in a single unit
which is known as data encapsulation. Object Oriented Programming allows some specialfeatures
such as polymorphism and inheritance. Polymorphism allows the programmer to give a generic
name to various methods or operators to minimize his memorizing of multiple names. Inheritance
enables the programmer to effectively utilize already established characteristics of a class in new
classes and applications.

The major components of Object Oriented Programming are as follows:
1. Class

2. Object

3. Data Members & Methods

4. Access Specifier and Visibility Modes

A class is used to encapsulate data and methods together in a single unit. It helps the programmer
to keep the data members in various visibility modes depending upon what kind of access needs
to be provided in the remaining part of the application. These visibility modes are classified as
private, public and protected. Usually, data members of a class are kept in private or protected
visibility modes and methods are kept in the public visibility mode.

An objectis an instance of a class that is capable of holding actual data in memory locations.

Class and objects are related to each other in the same way as data type and variables. For
example, when we declare float variable named marks, the variable marks can be thought ofasan
object of type float which can be assumed as the class. If we take another hypothetical case in
which Human is a class, Mr. Arun Shah, Mr. Aneek Ram will be the objects of this Human class.

Data Members and Methods:

A class contains data members and methods. As discussed in the above example, Mr.Arun Shah
is an object of class Human. The phone numbers retained by Mr.Arun Shah in his brain (memory)
will be the data. His eyes, ears, nose and mouth can be considered as various methods which allow
Mr.Arun Shah to collect, modify and delete data from his memory.

In real java programming, this data will be required to conform to a specific data type as in char,int,
float or double whereas the methods will be a sequence of steps written together to perform a
specific task on the data. Carefully observe the illustration given in Figure 5.15 to reinstate the
theoretical concepts learnt above.

Class Employee

Data Members
= EmpNo
= Name
- Salary

Method
= AddNewEmployee()
= DisplayEmployee()
= CalculateSalary()

Object Employee 1 Object Employee 2 Object Employee 3

- 1001 = 1002 - 1007
= Arun Shah - Aneek Ram - Kamya Sarkar
- 38000 - 49000 - 32000

Figure 5.15 Illustration Showing the Class, Object, Members and
Methods

The methods of specific classes are able to manipulate data of their respective classes
efficiently resulting in better security of data in an Object Oriented Programming
paradigm.

The JTextField, JLabel, JTextArea, JButton, JCheckBox and JRadioButton are all
classes and the |jTextFieldl, jLabell, jTextAreal, jButtonl, jCheckBox1l and
jRadioButtonl components are all objects. The setText(), setEnabled(), pow(),
substring() are all methods of different classes. This concept is illustrated in Figure 5.16.

f
i Class il 7
JTextField
Data Members
« Text
l « Editable |
« Enabled
« toolTipText
& B s
Object 1 Method Object 2
. setText()
« "Amit Khanna" « getText() « “Indian”
« true « setEditable() « false
« false « setEnabled() « false
« "Enter Name" « setToolTipText() « "Citizenship”
N 2% > J
(Class 3
Data Members
« Text
« Editable
« toolTipText
& A #
Object 1 Object 2
. setText() | jlabelz
« "Age" « getText() « "Gender"
« (21-62 Years) « setToolTipText() « (Male/Female)
« True « setEnabled() « True
S VAN PN J
o J

Figure 5.16 JTextField and JLabel Classes

Notice that the properties like Text, Enabled, Editable are actually the data members in
the class because they store specific values as data. For example, the property Text of
jTextFieldlobject contains the actual text to be displayed in the text field.

Variables

Variables are containers used to store the values for some input, intermediate result or the
final result of an operation. The characteristics of a variable are:

. It has a name.
. It is capable of storing values.
. It provides temporary storage.

. It is capable of changing its value during program execution.

However, as different materials require different containers, and so we used differentdatatypes
to hold different values. Java programming language requires that all variables must first be
declared before they can be used.

When programming, we store the variables in our computer's memory, but the computer hasto
knowwhat kind of data we want to store in them, since it is not going to occupy the same amount
of memory to store a simple number or to store a single letter or a large number, and they are
not going to be interpreted the same way so variables were used along with data types. The
data types supported by java are summarized as follows:

Data Types

Data type states the way the values of that type are stored, the operations that can be done on
that type, and the range for that type.

Numeric Data Types:

These data types are used to store integer values only i.e. whole numbers only. The storage
size and range is listed below:

Name |Size Range Example

byte 1 byte(8 bits) -128 to 127(-27to +(27-1)) byte rollno;

short 2 bytes(16 bits) |-32768 to 32767(-23to +(2'5-1)) short rate;

int 4 bytes(32 bits) |-2%'to +(2%'-1) int num1;

long 8 bytes (64 bits) [-2¢to +(2%-1) long amount;

Figure 5.17 Storage size and range of numeric data types

Floating Data Types:

These data types are used to store numbers having decimal points i.e. they can store numbers

having fractional values.

Name Description Size Range Example
float Single precision 4 bytes (3.4x1038) to +(3.4x1038) float
floating point (32 bits) average;
double |Double precisio 8 bytes (1.8x10-38) to +(1.8x10308) double
floating point [(64 bits) principal,

Figure 5.18 Storage size and range of floating data types

The decision about which numeric data type to use should be based on the range of values
that a variable can take.

Character Data Types:

These data types are used to store characters. Character data types can store anytype of values
- numbers, characters and special characters. When we want to store a single character, we
use char data type and when we want to store a group of characters, we use string data type.
For example, to store grades (A, B, C, D, E) of a student we will use char type but to store name
of a student, we will use string type. The char data type value is always enclosed inside " (single

guotes), whereas a string data type value is enclosed in " (double quotes).

Operators

With the introduction of variables and constants there arose a need to performcertain operations
on them. We performed operations on variables and constants using operators. Operatorsare
symbols that manipulate, combine or compare variables. The operators available in java are
summarized below:

Assignment Operator:

One of the most common operators is the assignment operator "=" which is used to assign a
value to a variable. We assign the value given on the right hand side to the variable specified on
the left hand side. The value on the right hand side can be a number or an arithmetic expression.
For example:

intsum = 0;
int prime =4*5;

Arithmetic Operators:

These operators perform addition, subtraction, multiplication, and division. These symbols are
similar to mathematical symbols. The only symbol that is different is "%", which divides one

operand by another and returns the remainder as its result.

+ additive operator

- subtraction operator

* multiplication operator
/ division operator

% remainder operator

Relational Operator:

A relational operator is used to test for some kind of relation between two entities. A
mathematical expression created using a relational operator forms a relational expression ora
condition. The following table lists the various relational operators and their usage:

Operator Meaning Usage

== equal to Tests whether two values are equal.

I= not equal to Tests whether two values are unequal.

> greater than Tests if the value of the left expression is greater

than that of the right.

< less than Tests if the value of the left expression is less than
that of the right.

>= greaterthanor | Tests if the value of the left expression is greater
equal to than or equal to that of the right.

<= less than or Tests if the value of the left expression is less
equal to than or equal to that of the right.

Figure 5.19 Relational Operators

Logical Operator:

A logical operator denotes a logical operation. Logical operators and relational operators are
used together to form a complex condition. Logical operators are:

Operator Use Meaning

&& a>10 && b<8 aand b are both true
| a>10|| b<8 Eitheraor b istrue

! la ais false

Figure 5.20 Logical Operators

Bitwise Operator:

Bitwise operators are used to perform manipulation of individual bits of a number. They can be
used with any of the integral types (char, short, int, etc). They are used when performing update
and query operations of Binary indexed tree.

Creating a new Project
Creating a new Form

To create a new application project called "Book™:
1. Choose File > New Project. Alternately, click the New Project icon in the toolbar.

2. From the Categories pane select Java and in the Projects pane, choose Java Application.
Click Next.

3. Enter a name (in this case Book) in the Project Name field and specify the project location by
clicking on the Browse button. By default, the project is saved in the NetBeans Projects folderin
My Documents and so this is the default Project location displayed in this field.

4. Ensure that the Set as Main Project checkbox is selected and clear the Create Main Class
field.

5. Click Finish.

Netbeans creates the Book folder on your system in the designated location. This folder will
contain all of the associated files of the project. The next step is to create a form. To proceed
with building our form, we need to create a container within which we will place the otherrequired
components of the form like a button. For all our applications we will choose the JFrame Form
as the container to place other components.

To create a JFrame Form container:

1. In the Projects window, right-click the Book node and choose New > JFrame Form as shown
in Figure 5.21.

2. Enter Form Example 1 as the Class Name. This will be the name of your form.

3. Enter Book as the package. This should be the name given while creating the Project. 4. Click
Finish.

™ Book - NetBeans IDE 6.5

File Edit Wiew Ravigate Source Refackor Run Debug Profile Yersioning Tools Window Help

ﬁ E] [& i‘ 2 : | F:default configs wI c&;-, BIHSE; [> E’_FD - C[f; -

‘Files .'EProjects a x| ...a\@j_lﬁj Examplel_2 java = [i‘_‘_jlﬁxg@wpleﬁl.iargi x @_E{
3. (= i 5 3 s e
H; &% Basic_Samples | o ‘ I[:?I : ﬁ B B LG
=~ &5 Book
. =L@ Source Packages
R .|
== e » B JFrame Form.. -
. Find... Chrl+F L__I JPanel Form...
cut Ctriay | (9] Javadlass... —
Copy Ch4+C [Java Package. ..
: bl &) Java Interface... Evening
€] Entity Class... ,
i Delete Delete ‘:]) 2 :
w0y Te Refactor " [&] Entity Classes from Database... ‘
&G ul : : @0 web Service Client... I
B3 Te ' '
';é Local History » T other...
- & Conne I
‘a@s & pehiC Tools >

s M mm—— ‘

Figure 5.21 Adding a new JFrame Form

Netbeans creates The Form Examplel form within the application and opens the formin the
Builder. Now we are ready to add components to our form.

Adding aButton Componentto a Form
We want to add a button so followthe given steps to add a JButton to the form:

1. In the Palette window, select the JButton component from the Swing Controls category
(displayed in Figure 5.22).

2. Move the cursor over the Form. When the guidelines appear (as displayed in Figure 5.22)
indicating that the JButton is positioned in the desired location, click to place the button. The
JButton is added to the form as displayed in Figure 5.22. Note that as soon as the button is

added on the form, a corresponding node representing the component is added to the Inspector
window.

Let us now try and recollect the conversion methods that we have used in java. When a Java
programreceives input data from a user, it must often convert it from one form (e.g., String)into
another (e.g., double or int) for processing.

O Dt Yewr Deageie Zoere Wefptr Do Debg Dote Veesprng Jook Sindow eb

rhtss 9 wararty MY B PO .
o = fhes v s ve LD Eraeplelpve = LD Drawglel pve w1 Coarghel S ralette » e
O Bosk 8! | soce Doy e ‘Lis < Swtrg Condrnds -

&) Sorce Padage L ate

- » ” ‘e L) o e ° . g n St

YORL e

srginl e U Tage Buton
rargin) s - Ot Bow
=
vargid e » - Nade Bt
-
LN om e = Ty
{ futtend |

Mar, by Mlﬂl& Mstten) e, » »

s my

= T IY oW
Sovobb 3

&) Tent Padages - Frrgefieme tran;
Narvu) sl e e o« [£8° 5 “oln
IS Fom Drawgi migend -
s Y Otter Cofloonant e e
. [Pvam) - _."”' 0
A Buttll [Dston)
/ Outpat - Boek () ¥V or Taks
W v -
TS JICRISING itonal tine] I slvetar 3 sstonds
)
-
®
Y \ 4 \ 4

The Projects window shows

a logical view of important The Design Area is the The Swing Controls
project contents. Note that place where we add Palette contains all the
all the components of components that can

single project can have

multiple forms the form like the button be added to the form

The Inspector window displays a tree
hierarchy of all components contained in the

; currently opened form. Displayed items

include visual components and containers,

such as buttons, labels, menus, and panels, as
well as non-visual components such as timers

Figure 5.22 Adding a Button and Understanding the Different Windows

Attaching Code to a Form Component

After placing the button, the next step is to write a code to exit fromthe application on the click
of this button. To do the same, double click on the button to attach a code with the eventi.e.
click of the button. Double clicking on the component opens up the source window and places
the cursor on the point where code is to be added. Note that certain code is pre generated and
cannot be changed. In the Source window add the single code line as shown in Figure 5.23.

D teh Mulesss DX 4.9

Use these tabs to switch
between the two views
. Pows A it Y
o ek -
d) S » The first two lines are
o automatically generated
s ot Aans FEAVMS VUl B LanlAct ool eTormrd | Jasn AV ol Mt baslbomer »
Wt A et e by - -
- Code added by
X the programmer
[SN Yat |
: f"_;‘ "~ PR — ® o Teds
4 ”s L . — F sssmman Bl swnsnis
28
G

Figure 5.23 Code to exit from an application

When we click the Source button, the application's Java source code in the Editor is displayed
with sections of code that are automatically generated by the Netbeans Builder indicated by
gray/blue areas, called Guarded Blocks. Guarded blocks are protected areas that are not
editable in Source view. Note that we can only edit code appearing in the white areas of the
Editor when in Source view.

Executing a File

Now that the code for the first application is ready let us test our first application. To

execute the application simply select Run>Run File or press Shift+F6 as shown in Figure
5.24.

Mile Bl View FReigics Seecs Relaco Oabsy Frolle ‘Yessomng Fosly Wisdow Neip

L i ! I el B By iy Progecd [
— r Fasi: Projact [Bcak Bl ol
Fiien Pl s # f ow B Db g w) O Eabepds, v »
t I Mk S i B M Pyt Fll
o & Cheen wred Bukd Man Profect Tilt=l1d
& Somrce Fecagm
(e
N Foiingee | . s Saf Pregent Confgasion "
¥ Easapil e Sat Mam Sroes "
3 Comspda’s jave
3 carwraby Jycaces Moak)
i Ees
¢ Eemwpird, ws g -
B Eiindet frvd o s
¥ Bommpd, s

8 Her e
B) Feed Pachaom

T e

& i Peat Lbewrsg

faal Bapast Dl - Book frum)

Tl

res

Figure 5.24 Executing a File

On executing the first example, the window shown in Figure 5.25 will appear. Click on

the button and observe the result.

Figure 5.25 Simple Button Application

As soon as we click on the button, the application ends and we return back to the Netbeans
design window. The one line of code system.exit(0) causes the application to terminate

successfully.

The window in which we have designed our form is called the Design window and the window
in which we have written the code is called the Source window. We can easily switch between

the two views by simply clicking on the relevant tab as displayed in Figure 5.22.

Changing Properties of Components

Each component of our application including the form has certain attributes associated with it.
The Properties Window displays the names and values of the attributes (properties) of the
currently selected component. We can edit the values of most properties in the Properties
window.

W Besks - Hloilbaans WL 8.9

Ly I
e A
L L ™ avgial v vomerpiod powe V|| [e
rom g A = Sy [sy
+]
- ke '
2N
SO il
.l by y
. b Vo
| i s |
- i s -y ~
i 5 i':.i:'
- Pl bl [L] - P e
& e
B TE T] froge W oe
B re "
w]
= [ot 1o
-
et LT)
~ - The - wel
g Fopnd | rem) LIS [
FULAL POCCEMIMEL ICNTAl Rike:) RSwmE §Y wdl
e

Figure 5.23: Using the text property of a button to change the display
text

We want to change the text displayed on the button. There are four ways of doing the same in
the design view:

e Selectthe button component by clicking on it. In the Properties window highlight the
text property and type STOP in the textbox adjacent to it as displayed in Figure 5.23.

e Alternatively select the object. Left click on the button to highlight the display text. Type
STOP and press Enter.

e Selectthe object > Press F2 - to make the display text editable. Type in the newtext
and press Enter.

Right click on the button component and select Edit Text from the Drop down menu to makethe
display text editable. Type in the new text and press Enter. Using the Properties window, it is
also possible to change the Font and Foreground property of the button as displayed in Figure
5.24.

jButton3 [JButton].. [» x palette

Properties = Binding Events Code
= Properties A
action [:J
Font property: to change background [(238,233 218) (J
the text writing style e fON Tahoma 18 Plain [J
e fOr€ground M (25500) ()
Foreground property: to 15Ty vi()
change the text color s 0
Text property: to change —_— et 310P D
the display text toolTipText null (L)
= Other Properties
UClassID)
actionCommand STOP)
alignmenti 0.0)
alignmenty 0.5 [:J
autoscrolls O])
baselineResizeBehavior [BaselineResizeBehavior]
border [XPEmptyBorder) fd
borderPairted ¥ J
buttonGroup <none> v ()
componentPopuphenu <none > v L]
contertAreaFiled ¥)
debugGraphicsOptions NO_CHANGES v ()
defaultCapable ¥)
disabledicon v L—J W
jButton3 [JButton] Wy

Figure 5.24 Changing Properties of a Button Using the Properties Window

Now when we execute the file the button with the changed text appears as shown in Figure 5.25.

STOP

Figure 5.25 The Button with an Appropriate Display Text

Displaying a Message in a Dialog Box

Now, that we are comfortable with the creation process, let us experiment further and try to
display a message on the click of the button. Follow the same process to create a fresh form
with a simple button as shown in Figure 5.25. Modify the properties of the button as desiredand
change the text property to "Wish Me".

Switch to the source window and add the single line code as shown in Figure 5.26.

W Bosk - MeSleai IOF &5
o Edt W hovioste Sewcs Relpoor Bun Deteg Dol Vosoowg Toob Winde ey

o~ Fes Seaes e D Manass x Samwesmi. ava @ Exangiel avs « Scavgll et &

o Baok -‘ Souce | D P’ b o - Zal K b od

200 JBalbenlAcl LonPerDovmed | Javh, AL &Vent A lonDvent ¥ L) |

pLlonfane, showNassagalblialoginull

e
Ot peat - Bk {ran) ¥ e Tasks

()

Figure 5.26 Code to Display a Message on the Click of a Button

As soon as you enter the single line code given above, an error indicator and the error message
"cannot find symbol" will be displayed. This error simply means that the JOptionPane component
is missing from our application. To fix this error we need to add this component. Left click onthe
error indicator to display a menu with 3 different options and select the option Add import for
javax.swing.JOptionPane from the menu.

Adding More Components to a Form

Great, nowthat we are comfortable with the interface, let us get back to the programmingjourney.
In the last example we had displayed a message on the click of a button. Now what next? All
the previous examples had only one component. Let us nowdelve further and try adding more
than one component to our form. Adding more components means that we will have multiple
code lines. So, first let us try and add more of similar components i.e. more buttons. So we will
design a application with 3 separate buttons and display a different message on the click of all
the three buttons. The first step is to add a newform and then we will add three buttons on the
newly created form. Drag and drop three buttons from the Swing Controls tab to complete the
form design as shown in Figure 5.27. Don't forget to change the properties and use the resize
handle to make the form appear exactly as shown in the Figure 5.27.

W B - MetBesm 0F &9

Fle B Yo lasts Sosie Raelpmie e Cetay Bofe Veeioweng foow edos b

PEES HE e AT B PG =

o s L Lo} aea | L] Coanpled e & EomroNs. W * W 4 =D petts » -
= N Bask N mowe | Doy Sy ™ - Swiray Conkrab .
1 Seie Fadages -
bk Vs By i o i by M 00 ol T Bim i s v Com i o 2t
o Topied v 3
N poapied s N Togghe Do,
N Coanpied v - ek B
Cosmpbedt v r«mm > =2
' Em B gk Bk -
B Eosnpiat v
) Maroes i) [tnes] Fra. W ow
L D PAChAOed W — - B tions iy
Pt fcwn & P Ivovp LR | bTUP owtn Code
B Norm Loamplel e — —— = PA—— »
oY Oty Compceants 1.
oo munaa) | DT W
g Eamont [By
B Barosd [Banon)
& e [tony
Ot g = Bask fruei) W s Tasks
.-l' o ~
FLAAD BELCAREFNL 'neied Sims 44 Bt as L) wesansa
i
>

Figure 5.27 A Form with three buttons

Now, just think how to associate different code with each of the three buttons. Remember,
double clicking on a particular button opens up the source window with the cursor placed atthe
point where code is to be added. So just do the same for all three buttons. Double click oneach
of the three buttons one by one and keep on adding the relevant code for each one of them.

We are going to use the commands we have already learnt in our previous examples to: Display
the message "Good Morning" on the click of the Morning button Display the message "Good
Evening" on the click of the Evening button End the application on the click of the STOP button.
The complete code for all three buttonsis displayed in Figure 5.28.

W Bosk - Meleanm I0F £.5

e B Ve NSNS SRt AMGmE Bt De00) Brofile esesides) [o0K SWdoe D

vl B | B ;) ey) . BN - (B - “
LRSS 9 i WYTHEPB-G a

oo Fles Samrrw ey omen | D) Evavgled s @ [0 Evarpled jess o« |) Exarpindjova =) Ecample® sevs * = '_‘; |_'_l aj

- So S| sowen Davign | [[AeFE F2¢ a9 ol 0 J

roe Fahages
2 erOe Facages e
| teok —I

pELVATE vald JButtenlActionPferlermed |)ave. vl , event . Lot 1anbvent &%t |

o Exwplel e
3 Seawolal va
JOpt toaifane . shoniessageld al o this, K,
O LWl ova
I
3 Esawplad e
v " pritvate wild jHatten2Acitonfeslormed |) s, A9t . evant . AT 1onEvent &¥t| |
AEWREY Y

L Man.jve

JOgE Lonifant . sbhowosaegelialopithss | s
’) Taid Pachagas - g ¥ Wil '
’ W "
MAten WAcHinsPerisrem., LS. privats yvald jJHRttoniActl fonferformed |) ava. awl . svent . LOT 1onfwent evt |
Fsrdars Ve v
Exaanglel :: o) Syataw.ex3 0]l ;
Exampta™ | |
By mCorgonents| " »
W Bulion] dctionPe i orned a1 Y
) BubierdVcliorPeriorned Notpa - Book |) - &
0 SLU () WoE Taks
9 EutloriclionPel vered
{ Ry A
& e | | W
c » BUILD SWOCEISFUL jracal cims: L3 misugtes 35 ceconie
ﬁ. | & . -
o

Figure 5.28 Code to Add Functionality to the Form designed in Figure 5.27

Now execute the Example and observe the result of clicking Morning and Evening Buttons.

As we create applications and add to them new objects such as buttons and textboxes, theyare
automatically assigned names such as jButtonl, jButton2 and so on by the IDE. Butit is good
practice to give names that better match the functionality, such as BExit and BMorning.
Remember that objects on the same form cannot have same name, but two forms might contain
objects with the same name.

Using a Text Field Component to Display a message

In all the above examples we have displayed all the messages in dialog boxes. But In real life
applications we might have to display messages in Text fields too. So we will try and learnabout
the text field componentin our next example. The Text Field component is a text input field in
which users can enter single line of text.

Let us change the above example so that on the click of the Morning button, the message "Good
Morning" should be displayed in the Text Field and similarly on the click of the Evening button,
the message "Good Evening" should be displayed in the Text Field. The code for the same is
depicted in the figure 5.29.

Sowce | Desgn W e ey 2 -
private volid jButtonZActionFerformed|java.avt.event, ActionEvent evt] w
ek lext | 1 :
private void jfuttonlActionPerformed | java.avt event ActionEvent eyt)
+EeLTex |) :
£ : : . - - -
private volid jButtenIiotionferformed | java. avwt event , At ionEvent eve)| |
SUatTeEm . éxaein 2
& b,

Figure 5.29: Code to Display message in a Text Field on the click of a Button

The above code introduces us to a new method called setText(). This method is usedtochange
the display text of a component (label, text field or button) during run time. The syntax of this
method is given below:

Syntax:
component.setText("text")

The "text" is the display text to be shown for the mentioned component.

Using a Text Field Component to Accept Input

In the above example we used a text field to simply display a message but in real life applications,
we use a text field to accept input from the user. So in the next example we will use two text
fields, one to acceptinput and a second one to display a message. Let us first design the form
as displayed in the Figure 5.30. The purpose of this form is to accept the name of the user in

the Text Field placed at the top and then display a personalized greeting (greeting along with
the name of the user) in the Text Field placed at the bottom. Just like there is the setText()
method to change the display text of a component at run time, there is a getText() method to
retrieve the display text of a component (label, text field or button) at run time.

Labels Buttons

reire r, N T\

Enter your name pleasae

STOP

|
Morning] | Evening

Yourl personalised wish foif the day

I

\T)

Text Fields

Figure 5.30 Form Design to Display a Personalized Time Based Greeting on the Click of a Button

Observe the Figure 5.30 carefully. we have used a new component - a label and the two text
fields. A label is a component which is used to display simple text or as a label for another
component. Out of the two text fields one of them has a white background while the other has
the same background colour as the form. The difference in the background colour tells us that
one of the text field is editable while the other is not. In simple words editable means that the
user can change the text displayed in the text field at run time. The text field at the top has to
accept the name of the user and is editable. The text field at the bottom has to display the
greeting and is non-editable.

Figure 5.31 displays the properties of both the text fields.

[TamhFiadedl | ITastfy, o« Paetle Tt Fiedd? | TTemifs y x| pakte
FYODRst s el Everirs Lo Frop=tis i Everts Cocks
Frogartes Prrpertes
bsyonre L 255,268,251 | bactgroun O [262511E
= U L] J ol i
st ol sk w | Ot oy
wlbabia v . mridabln
s Tema 14 Fain :
o 0 i alagmear = ol T horeoriskasgrment LTAD MG

Figure 5.31 Setting Text Field Properties

The editable property is used to control the editing nature of a text field at run time. Therefore, the
firsttext Field's check boxis selected (indicating that it can be edited at run time) while the second
one is non-editable. Now select the label components one by one and change their properties
using the Properties window as shown in Figure 5.32.

faball [Mabel] - Pr.. » = | Palslle

Porogssrthes Binding Eweris Docke
Properies i
bacgrourd L1 Fale
Font property: to change s ! bt et
the text writing style —_— fom Tahoma 14 Fold
o gl] . [[LFL n
Horizontal Alignment: t0 ey horizomtalilignmseni ENTER: w []
change the horizontal [T
placement of the text. [e “In
Set to Center to display = four Wi For e Do E
the text in the center of - =
the label = —
wartic sl Algrment JENTER: e
Text property: to change = b Pl
the display text at design LiClsssD
time. el 10
SgrreETRY
mAnyrrd
Lt e o .F"'-I-‘- i R. | i .--'.-". IR
b o B
Edmpianl P gl g -] =
detrug e aphic 2 0psons L RAdWaE S v |
chrsbladcon
displrpedbinstoncinde -1
o indaPurifered
arsskad o L] o

Figure 5.32 Few Properties of the Label Component

After completing the designing of the form, nowwe are ready to add the code. Remember that
we had to use the getText() method in our code. Again double click on the three separate buttons
one by one to attach relevant code to each one of them. Observe the coding given in Figure
5.33.

The code teaches us another useful method - getText(). This is used to return the textcontained
in the referred text component. It is generally used to retrieve the value typed by the userin a
textbox or label. The syntax for this method is given below:

Syntax:
jtextField1l.getText()
This command is used to retrieve the value of the text Field named jtextFieldl.

Let us nowunderstand the code. We want to display the message in the second text field along
with the name of the user which has been entered in the first text field. jTextField1.getText()

e Retrieves the name entered by the user in the first text field using getText().

"Good Morning" + jTextField1.getText()

e The message "Good Morning" is concatenated with the name retrieved from the first
text field using the + symbol.
jTextField2.setText("Good Morning” + jTextField1.getText())

e The display text of the second text field is set to the concatenated message
using setText().

Soace | Desin [§ |59 - Qeg s ¥t 338 o8 4 J
privmEs vVoid JEBubtamlAcEionferformed | j&va. sut ,svent leBionBEvent evt) |
FACFEE 102 agr TR ¢ JTEcFisldl . JgecTexc(]):

pFEivacs volid jEuLlt-omnlActionfe Flsemed [javn. AWt .. eVEnt . ST losEveEnt VL) |

jTextFi=ldd , A TEXE | 4+ jT=xcFi=ldl.gecTexc (] 12
1

privace void jButtomIActionPerformedl [java.sws evene ocionEvene evt) |

AT T, s 0] g

Figure 5.33 Code to Display Personalized Time Based Greeting on Click of
a Button using the string concatenator operator (+)

Figure 5.34 displays an alternative method of concatenating the message and the contents of
the text field.

| Soues | Design | [5 + A9 dYE F4% 9z 8 B £

XY ks

pEilvace wold JEattonlictienPertormed | jave,. ANT , @Vent ., Aec lonEvent esve] |

i TextFisldl, secTage | Jeppsat (JTexeFieldl , gesTase (] |}
1

pEivace vald jEattonZActionPerto tmed | favs. avt . 8vent .. Ao ionEvent ave]

iTextFisidl , sae Taxe | JeohcAt [TexeFieldl geaeTae (]))

Figure 5.34 Code to Display Personalized Time Based Greeting on Click of a Button
using concat() method

This alternate uses the concat() method to add the two strings together. The syntax of this
method is:

Syntax:

stringl.concat(string2)

This will result in adding the string2 at the end of the string1. For example: "sham".concat("poo")
returns shampoo

And
"to".concat("get").concat("her") returns together

Finally, our code is ready for execution. Figure 5.35 displays the output when the user enters
the name and clicks on the Morning button.

Erster wour msrmee please

by

Fun
-~
o
g)

flr TN Evering
Your persomalised wish for the day

Good Mormdng Jal Kisham 3ok

Figure 5.35 Execution of Time Based Personalized Greeting Code

Handling the Radio Button Component

By nowwe have completely familiarized ourselves with the working of text field, buttons, labels

and message box. Let us now delve further and try to explore the utility of other components.

Let us first try and modify the above example a bit. Supposing instead of displaying a message,
we need to display the title of the user (Mr. or Ms.) along with the name input in the textbox.

How to go about it? The simple answer would be to accept the title in a separate textbox and

then concatenate it with the name. But do you think itis the right approach? Using the textbox
for accepting the title will cause ambiguity thereby making the code complexas we will have to

cater to the different inputs. Different users will have different ways of entering the title. Some
might write MR. or some might write Mr. or some might write MR (without the dot). Then howdo

we avoid this ambiguity? A simple solution is to use a radio button component to accept the

gender input. Radio buttons are groups of buttons in which, by convention, only one buttonata
time can be selected. First design the form with the following components:

e one editable text field to accept the name

e agroup of 2 radio buttons to accept the gender

e one non-editable text field to display the name along with the title
e appropriate labels to direct the user

As a first step drag a text field from the Swing Control tab of the Palette. Next drag and place
two radio buttons as shown in the following figure. Remember that out of several radio buttons

belonging to a group, only one can be selected. Therefore, the next step is to associate the two
radio buttons to each other. This is achieved by linking both the radio buttons with a ButtonGroup.
For each group of radio buttons, we need to create a ButtonGroup instance and add eachradio
button to it. It is necessary to associate all the radio buttons in a group to one ButtonGroup. The
ButtonGroup takes care of unselecting the previously selected button when the user selects
another button in the group. So drag a Button Group component from the Swing Controls tab
and drop it anywhere on the form. This is an invisible component which is just used to associate
several radio buttons. Nowto associate them to same button group, select the first radio button
and edit the buttonGroup property of this radio button using the Properties Window as shownin
Figure 5.36. Repeat the same procedure for the second radio button of this group to associate
them to same button group. Select the same Button Group from the drop down menu in the
buttonGroup property for the second radio button.

Unassociated
Button

o

Sourca | Design LU o

FadioButbond [Ra_ Ik = paletbe

Properti=s | Bnding Events Cods
'} Ml) Female
- Propermsn
&Hion |
e hoogr el [2= 233, 116] (]

Associating a
& toregrour Buttentroug!

radio button to
a buttonGroup

e

gejscted

] Mal=

Figure 5.36 Associating First Radio Button with a buttonGroup

After both the radio buttons have been associated together, clicking on any one of them will
show an association between theminforming us that they belong to a group. Add one more
non-editable text field to display the name along with the title. Double click on each of the two
radio buttons one by one to associate them with the appropriate code displayed in Figure 5.37.

[1 T =y R | i ik = E - L]
nriw | Design =) ueyiEYYeS S 3 -

privace vold jRadiclultenifActionFerformed | jave. ave . ant , A ionEvent eve|

} cmeCTexT | +iTextField]l .getTexc (I h

private vold jJRadioButtonZActionPerlormed | Jova. vt . eVent , ACCIonEveEnT a&vt|

mxtField? =ec Texs | +iTent Foeldl . gecTexc () b1

Figure 5.37 Associating Code with the Radio Buttons

Now execute the program and see the output.

Using the Text Area Component

The text field allows the user to enter a single line of text only. The Text Area componentisused
if we want to accept multiline input or want to display multiline output. This component
automatically adds vertical or horizontal scroll bars as and when required during run time.
Utilizing the concept of Text Area, let us design an application which accepts names of two
people and displays a short message about Friendship or Colleagues depending upon which
button is clicked.

Design the form shown in Figure 5.39. One new component - the Text Area has been added
while the rest of the components are familiar. Write the code as shown in Figure 5.38 forthetwo
buttons. Add the code for the STOP button.

SO Dhgign o |l = = aj - B

" o e ad | W R i P = o

pcivabe volid jEunttonlActionPerfommed | jevm.avt =vent . Aot 1onEvent =vi)
Al . =EL Jext [1= 1dtl ., et Text [+ T
.gecTexXT [} +
+
18
pEivaceE void jEattan2fct ionPerlormed |] &va . avs , 8Vent - ACt ionEVeEnT avL)
yERETREG (ATescFieldl . gecTexe ()4 !
e TExt () + +
1

Figure 5.38 Code for displaying Multiline Text in a Text Area on the click of a Button

Figure 5.39 shows the sample output of the code given in Figure 5.38.

First Person Ranjana

Second Person o iana

Friemds Colleagues STOP

Ranjana and Sanjana are true friends.
A true friend encourages you to live your dreams

Figure 5.39 Sample Run of the Text Area Application

Handling a Password Field Component

We can use the Password Field if we want that the text input by the user should not be displayed
as characters but as special characters (so that it is not readable by anyone). This component
allows confidential input like passwords which are single line. Let us design a simple application
which displays a simple message when the user inputs a user name and password. Figure 5.40
displays the sample run of the application. Remember that no checking is being done, rathera
simple message is to be displayed on the click of the LOGIN button and the application should
be terminated on the click of the CANCEL button.

Usar Mame Triall ——2—> Text Field
Password ‘T i p—
LOGIN CAMNCEL

i Trial Logged In Disno Version Successiully
- {Passveord ignoced - vll be checked later)

I 1
[LOK |

Figure 5.40 Sample run of the Password Application

Figure 5.41 displays the code to display the message on the click of the LOGIN button.
Add the code for the CANCEL button also yourself.

3 -) S, el L dh = oM o
- -‘L e Ty d & , & L o= " sl J

privace woid jButtonlActionPerformed|’ava.aut.event . ActionEvent eve) |

JoptionPanes . shosMessegeliz alogpinual l extFieldl . .getText|] +

Figure 5.41 code to display the message on the click of the LOGIN button

In all the previous examples we have been doing text manipulation. Let us nowdo some simple
computations and calculations. Design the form as shown in Figure 5.42. The form components
are:

e 1 editable text field to input the price per Apple
e 1 non-editable text field to display the amount to be paid

e 3 buttons, one for calculating and displaying the price of one dozen apples, one for
calculating and displaying the price of two dozen apples and one to exit out of the
application.

e 2 labels to guide the user what information is to be added.

Price per APPLE Amount to be paid

12 144

One Dozen Two Dozen

Figure 5.42 Price Calculator

Let us first analyze the problem so that we can easily write the one line code required for all
three buttons.

e The first button with the "One Dozen" display text has to calculate the price of one
dozen apples and display it in the second text field. To calculate the price of one dozen
apples, we need to knowthe price of one apple. This is given in the first text field. So
we need to retrieve the value of the first text field. After retrieving the value we will
simply multiply it by 12 and display the answer in the second text field.

e The second button with the "Two Dozen" display text has to calculate the price of two
dozen apples and display it in the second text field. So the process remains similar to
the first button but only while calculating we will multiply the price of one apple by 24
and display the answer in the second text field.

e The third button with the "STOP" display text has to simply end the application.

Enter the code for each button separately as shown in Figure 5.43.

T

| JHuL L oaRERG L O e haa , ST S R LD e

Figure 5.43 Code for the Price Calculator Application
The code has introduced us to two new methods:
e Integer.toString() - used to convertan Integer value to String type
e Integer.parselnt() - to convert a value to Integer type
We are already familiar with setText() and getText() so nowwe are ready to understand the code.
jTextFieldl.getText()

e Retrieves the value entered by the user in the first text field using getText(). This value by
defaultis treated as a string i.e. a group of characters and not as a number

e 12 *Integer.parselnt(jTextFieldl.getText()) The string value needs to be convertedto an
integer number and this is achieved using the parseint() method. After converting it to a
number itis multiplied by 12

Integer.toString(12 * Integer.parselnt(jTextField1.getText()))

The value calculated is a number which is to be displayed in a text field. So before displaying it
needs to be converted to a string type and this is achieved using the toString() method.

jTextField2.setText(Integer.toString(12 * Integer.parseint(jTextField1.getText())))

The converted value needs to be displayed in the second text field. This is achieved using the

setText() method. Nowtest your code and enjoy the result of your hardwork. A sample runis shown
in Figure 5.42.

Let us now do some simple calculations involving numbers with decimals (called double in java).
Design the form as shown in Figure 5.44.

Price 45,50

Chartity i1 ()
STOP

Cadcifate Annoart

At 455000

Figure 5.44 Amount Calculator using Numbers with Decimals
The form components are:

e 2 editable text fields to input the price and quantity

e 1 non-editable text field to display the amount to be paid

e 2 buttons, one for calculating and displaying the amount payable and one to
exit out of the application.

e 3labelsto guide the user what information is to be input and displayed

Let us first analyze the problem so that we can easily write the single line code required for the
Calculate Amount button.

e The first button with the "Calculate Amount” display text has to calculate the total
amount to be paid and display it in the third text field at the bottom of the screen. To
calculate the amount, we need to know the price of one item and also the quantity of
the item purchased. These values are given in the first and the second text field
respectively. So we need to retrieve these values from the two text fields. Remember
that these values will be by default string type so we need to convert themto a suitable
type (in this case double) so as to be able to perform calculations on them. After
retrieving the value we will simply multiply the two values and convert the value so
obtained to string and display the answer in the third text field.

Now add the code for the first button as given in the Figure 5.45

Source | Desin [[- Qe E Yet AL LA

— — =)

pEIVALE woid jﬁllttﬂhﬂﬁﬂtiﬂ!ﬁl"lfl‘rlhl‘ll:_'||=|l\.|'|'J.|=|'.i'.|1".'|1':'|1.-ﬂ.l’:f.'ll'lllE'\-Jl-"'l.l L Rl

17 m=tText (Douwnle, EaSErimy
i
oo le, pacsalowbla| jTexteFisldl .getTeaxt ())
E

Dol le ., paraelouble| | TexcFields . gacTexc ())

Figure 5.45 Code for the Amount Calculator Using Numbers with Decimals

The code has introduced us to one new method:

e Double.parseDouble() - to convert a value to Double type We are already familiar with
setText(), getText()and toString() so nowwe are ready to understand the code.
jTextFieldl.getText() and jTextField2.getText()

e Retrieves the value entered by the user in the first and second text fields respectively

using getText(). These values by default are treated as strings i.e. a group of characters
and not as numbers

Double.parseDouble(jTextFieldl.getText()) and
Double.parseDouble(jTextField2.getText())

e The string values need to be converted to numbers with decimals and this is achieved
using the parseDouble() method. After converting both the valuesthey are multiplied to
get the total amount payable.

Double.toString(Double.parseDouble(jTextFieldl.getText()) *
Double.parseDouble(jTextField2.getText()))

e The value calculated is a number with decimals which is to be displayed in a text field. So
before displaying it needs to be converted to a string type and this is achieved using the
toString() method.

jTextField3.setText(Double.toString(Double.parseDouble(jTextField1.getTex())*
Double.parseDouble(jTextField2.getText()))

e The converted value is displayed in the third text field using the setText() method.

Relation between a Project, Form and Components

Remember each project can have multiple forms and this fact is clear from the Projects
window as shown in Figure 5.46.

Project Name <—— = 59 Bwuk ~
=) Sourpe Packages
ook
Examplal . java
1. Exampled.jaea
Multiple Forms guf [y Exampledjava
under one Project [y Exampled.java
Ii ExampleS.java
i, Main. java
- Li) Tash Packagas W

Figure 5.46 Project Window Showing Multiple Forms

Further each form can have one or more elements - some of which may be visible and some
invisible. The visible components are all shown under the Frame Component and the non-
visible components are part of other components.

Each application is treated as a Project in Netbeans and it can have one or more forms.
Each form can have one or more components and this relation between a Project, formand
components is depicted in Figure 5.47.

FORM 2

Figure 5.47 Relations Between Project, Form and Components

Variable Declaration

We have learnt that variables are capable of storing values, which we need to use. Toreference
a variable, it should have a name. Moreover, variables in java can only accept a value that
matches its data type. So before we use a variable we must decide on its name and its data
type. Giving this information to the language compiler is called variable declaration. Thus, the
declaration of a variable tells us about the name of the variable which is necessary toreference
it, the type of data it will store and optionally an initial value. Given below are some commonly
used ways of variable declaration.

Declaration Example Comment
int Apples; Simple declaration of an integer variable named Apples.

float Sum = 4; Declaration of a float variable named Sum which has an

initial value of 4.0.

Variable Naming Conventions

As mentioned above, each variable needs to have a name so that it can be referenced
anywhere during the application. Each programming language has its own set of rules for
naming variables. The rules and conventions for naming variables in Java are summarized
below:

e Variable names are case sensitive.

e Keywords or words, which have special meaning in java, should not be used as
the variable names.

e Variable names should be short and meaningful.

e All variable names must begin with a letter, an underscore (_) or a dollar sign ($).
The convention is to always use a letter and avoid starting variable names with
underscore (_) and dollar sign ($).

e After the firstinitial letter, variable names may contain letters and digits (0 to
e 9)and (_,$), butno spaces or special characters are allowed.

Using the above conventions and rules following is an indicative list of acceptable and
unacceptable variable names.

Acceptable Variable Names - Grade, Test_Grade, TestGrade

Unacceptable Variable Names - Grade(Test), 2ndTestGrade, Test Grade, Grade_Test#2 Try to

Java variable names are case sensitive, so suml and SUM1 aren't the same variable.

Simple Applications Using the Concept of Variables

Now, let us develop a simple application to learn the use and handling of char data type.
Suppose we want to display the message entered by the user surrounded by four different
characters. See the sample execution of the application as shown in Figure 5.48.

- J.l.rlgil: Tt

Text Messacge

Barbie Dol
Message
surrounded by the
+ & iy L SToP selected character
~"# on click of the
Al T appropriate button
bered Text atarbis Dollz i

Figure 5.48 Handling Character Variables

As is clear from the sample run, we need to concatenate the message and the selected
character depending upon the button clicked by the user. Let us now design the application:

First add a new J-rame form and set its title property to "Magic Text". Design the form as
shown in Figure 5.48 with the following components:

» one editable text field to accept the message

= five buttons - four to concatenate message with different characters and one to exit
from the application

= one non-editable text field to display the concatenated message

= appropriate labels to direct the user

Change the properties of the components as learnt in the previous chapter so thatthe formlooks
exactly like the one displayed in Figure 5.48. The next step is to associate code with the all the
buttons. Double click on the buttons one by one in the design windowto reach at the pointinthe
source window where the code needs to be written. Add the code for each of the buttons shown

as follows.

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt)
{
// Concatenate * to the text in
JjtextFieldl: char Star;
Star='*";
JjTextField2.setText (Star+jTextFieldl.getText () +Star
)

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt)
{
// Concatenate # to the text in
JjtextFieldl: char Hash;
Hash="#";
JTextField2.setText (Hash+jTextFieldl.getText () +Hash
) ;

private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {
// Concatenate % to the text in
jtextFieldl: char Percent;
Percent='%";
JjTextField2.setText (Percent+jTextFieldl.getText () +Percent) ;

private void jButtonSActionPerformed(java.awt.event.ActionEvent evt)
{
//To STOP the
application:
System.exit (0) ;

private void jButtond4ActionPerformed(java.awt.event.ActionEvent evt) {

// Concatenate ™ to the text in
jtextFieldl: char Quotes;
Quotes='"";

JjTextField2.setText (Quotes+jTextFieldl.getText () tQuotes) ;

Now try to develop a similar application with four buttons to perform the basic mathematical
operations of addition, subtraction, multiplication and division of any two numbers entered bythe
user. First design the form with the following components:

* two editable text fields to accept the two numbers .

= four buttons to decide the operation, one button to reset the fieldsand one
button to exit out of the application.

= one non-editabletext field to display the result.
= appropriate labels to direct the user.
When the user enters two numbers and clicks on the + button, the sum of the numbers is

displayed in the jtextField3 which has been disabled (by setting its editable property to false) as
shown in Figure 5.49.

When the user clicks on the RESET button the contents of all the Text Fields are cleared.

’ Uesic Calcwlsinr

Hrsd MNusmEser

Secondd Sumiber

+ - X /

Resyit 14520

[y = STCE

Figure 5.49 A Simple Calculator Showing
Addition of Two Numbers

Now write the code for each button of the basic calculator shown as follows:

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt)
{
// Code to add Numberl
and Number2: double
Numberl, Number2, Result;
Numberl=Double.parseDouble (jTextFieldl
.getText ());
Number2=Double.parseDouble (jTextField2.getText ()
) ; Result=Numberl+Number?2;
JjTextField3.setText (Double.toString (Result));

private void jButtonbActionPerformed(java.awt.event.ActionEvent
evt)
{
// Code to clear the contents of the
text field: jTextFieldl.setText ("");
JTextField2.setText ("");
JTextField3.setText ("");

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt)
{
// Code to subtract Number2 from
Numberl: double Numberl,Number?2,Result;
Numberl=Double.parseDouble (jTextFieldl.g
etText ()) ;
Number2=Double.parseDouble (jTextField2.getText ());
Result=Numberl-Number?2;
JjTextField3.setText (Double.toString (Result));

private void jButton3ActionPerformed(java.awt.event.ActionEvent
evt)
{
// Code to multiply Numberl
and Number2: double
Numberl, Number2, Result;
Numberl=Double.parseDouble (jTextFieldl
.getText ());
Number2=Double.parseDouble (jTextField2.getText ()
) ; Result=Numberl*Number?2;
JTextField3.setText (Double.toString (Result));

Let us now understand the code. We want to display the result of a computation involving
numbers entered in the first and second text field in the third text field based on the button
clicked. So only the operator is being changed while the basic

private void jButtonb6ActionPerformed(java.awt.event.ActionEvent
evt)
{
System.exit (0) ;
}

steps of computation remain the same. So we will explain one (coding for the first button)indetail
here:

double Numberl,Number2,Result;

private void jButtond4ActionPerformed(java.awt.event.ActionEvent
evt)
{
// Code to divide Numberl
by Number2: double
Numberl, Number2, Result;
Numberl=Double.parseDouble (jTextFieldl
.getText ());
Number2=Double.parseDouble (jTextField2.getText ()
); Result=Numberl/Number?2;
JTextField3.setText (Double.toString (Result));

e declares three variables of type double

Numberl=Double.parseDouble(jTextField1.getText()); and
Number2=Double.parseDouble(jTextField2.getText());

e retrieves the value entered by the user in the first and second text field using
getText(). These values by default are treated as strings i.e. a group of
characters and not as a number so the string values need to be convertedto a
double type and this is achieved using the parseDouble() method. After
converting it to a double type the values are assigned to the variables declaredin
the first line of code

Result=Numberl+Number2;

e The two values stored in the variables are added and the calculated value is
stored in the variable Result.

jTextField3.setText(Double.toString(Result));

e The value stored in the variable Result is of type double so it is first converted to
type string using the toString() method and then the display text of the third text

field is set to the converted value using setText().

The working of the other three buttons (second, third and fourth) is similar to the one explained
above. We are already familiar with the working of the STOP button so let us give a quick look
to the coding of the RESET button

jTextFieldl. setText(""); and
jTextField2.setText(""); and
jTextField3.setText("") ;

e The display text of all the three buttons is set to an empty string (i.e.
blank) using the setText() method.

In all the applications developed so far we have used a single type of data and done simple
calculations. Next let us explore the use of multiple data types and using these data types try
to perform complex calculations.

Observe the form shown in Figure 5.50 and design a similar form.

” Simple fnterest Cakculatar

27 2500
Principal
Rate 84 10
Thme {In Years) 5
Calculate S, Initerest STOP
Simple Interest 12500

Figure 5.50 Simple Interest Calculator

The aim of the application is to accept the principal amount, rate and time in three separatetext
fields and calculate the simple interest on the click of a button. The calculated interest is
displayed in a disabled text field. The coding for the same is given in Figure 5.51.

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt)
{
double Principal,Rate,SInterest;
byte Time; //Expected value not more than 127 Years
Principal=Double.parseDouble(jTextFieldl.getText ()) ;
Rate=Double.parseDouble (jTextField2.getText ()) ;
Time=Byte.parseByte (jTextField3.getText ()) ;
SInterest=(Principal*Rate*Time) /100; //Formula to calculate SI
JTextField4.setText (Double.toString (SInterest));

private void jButton2ActionPerformed(java.awt.event.ActionEvent
evt)

{

FFigure 5.51 Code for Simple Interest Calculator

Control Structures

We use control structures when we want to control the flow of the program. There are types of
control structures: Selection statements and Iteration statements.

Selection Statements:

A selection statement selects among a set of statements depending on the value of a controlling
expression. The selection statements are the if statement and the switch statement, which are
discussed below:

Simple if Statement - The if statement allows selection (decision making) depending uponthe
outcome of a condition. If the condition evaluates to true then the statement immediately
following if will be executed and otherwise if the condition evaluates to false then the statements
following the else clause will be executed. The selection statements are also called conditional
statements or decision statements.

The syntax of if statement is as shown below:

Syntax:

if (conditional expression)

{
Statement Block;

else

Statement Block;

Points to remember about if statement:

. The conditional expression is always enclosed in parenthesis.

. The conditional expression may be a simple expression or a compound
expression.

. Each statement block may have a single or multiple statements to be executed. In
case there is a single statement to be executed then it is not mandatory to enclose
it in curly braces ({}) but if there are multiple statements then they must be enclosed
in curly braces ({}).

. The else clause is optional and needs to be included only when some action is to
be taken if the test condition evaluates to false.

Let us nowdesign another application: “Vote Eligibility Checker” where we are accepting the
age from the user and we want to validate whether the person is eligible to vote or not. We
are accepting the age of the user in a text field and testing whether the age entered by the
user is greater than 18 or not. If the age is greater than 18 then the message "You are eligible
to VOTE" is displayed. If the age is less than then the message “You are NOT eligibleto VOTE’
is displayed. In such situations when we have to take action on the basis of outcome of a
condition, we need to use a Selection statement. Design the form and set the properties of
the components so that the form looks exactly like the one displayed in figure 5.52.

Yate Fligibility Al=1]

Age 12

Check Eligibility To Vote

) You are NOT eligible To VOTE

STOP
- x} ot]

Figure 5.52 Sample Run of The Vote Eligibility Checker
Application

The code for this application is given as follows:

Private void
JjButtonlActionPerformed(java.awt.event.ActionEvent evt) {
// Code to check eligibility to vote with else condition: if
(Integer.parselnt (jTextFieldl .getText ())>=18)
JOptionPane.showMessageDialog (null,"You are eligible To
VOTE") ;
else
JOptionPane.showMessageDialog (null,"You are NOT eligible
To VOTE") ;
}

Let us now understand the single line code in detail.

Integer.parseint(jTextFieldl.getText())

e retrieves the value entered by the user in the text field using getText().Thisvalue
by default is treated as a string and not as a number so it needs to be converted to
an integer type and this is achieved using the parselnt() method.

if (Integer.parselnt(jTextFieldl.getText()) >=18)

e check whether the value retrieved from the text field is greater than or equal to 18
or not. The if statement is used to check the condition and if the condition
evaluates to true then we specify what action is to be taken

if (Integer.parselnt(jTextFieldl.getText()) >=18)

JOptionPane.showMessageDialog(null, "You are eligible to VOTE")

e Thisif statementis used to check whether the value retrieved from the text field
is greater than or equal to 18 or not and if it is then it displays the message
"You are eligible to VOTE" using the showMessageDialog() method.

else
JOptionPane.showMessageDialog(null,"You are NOT eligible to VOTE");

e The else statement is executed if the value retrieved from the text field is less
than 18 and if it is then it displays the message "You are NOT eligible to VOTE"

using the showMessageDialog() method.

Nested if ... else - These control structures are used to test for multiple conditions as against
the simple if statement which can be used to test a single condition. The syntax of nested if else

is as follows:
Syntax:
if (conditional expressionl)
{
statementsl;
}
else if (conditional expression2)
{
statements?2;
}
else if (conditional expression3)
{

statements3;

}

else

{

statements4;

Let us nowdevelop another application called the Week Day Finder in which we will learn how
to use if statement when we have multiple test conditions. The Week Day Finder will display the
name of the week in a disabled text field depending upon the day selected by the user. The days
are displayed as radio button options, which have to be selected. So, the form will have 7 radio
buttons and depending on the button selected the day of the week will be displayed.

B Vicek Day Finder fOE
-8 Day One Day Two Day Three
Day Four Day Five Day Six
Selecting Day
One results in e
displaying
Monday in the Week Day Finder STOP
text Field
Monday

Figure 5.53 Sample Run of the Week Day Finder

Design the form as shown in Figure 5.53. and set the properties of the components according
to the functionality required as shown in Figure 5.53. Monday is displayed when the radio
button corresponding to Day One is selected as shown in Figure 5.53 as it is the first day of
the week. If we select the radio button corresponding to Day Sixthen Saturday is displayed,
as it is the sixth day of the week.

It is clear from the above form that we have to test for multiple conditions. If jJRadioButtonl is
selected then Monday will be displayed and if jRadioButton2 is selected then Tuesday will be
displayed and so on. All the select conditions will be checked from top to bottom andwherever
the condition evaluates to true, the statements corresponding to that jRadioButton will get
executed. What happens in case none of the jRadioButton is selected?

After understanding the working let us now write the code for the Week
Day Finder application as shown in Figure 5.54.

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt)

{

// To find the day of the
week 1if
(jRadioButtonl.isSelected ())
JjTextFieldl.setText ("Monday") ;
else if (jRadioButton2.isSelected())
JjTextFieldl.setText ("Tuesday") ;
else if (jRadioButton3.isSelected())
JjTextFieldl.setText ("Wednesday"
); else if
(JjRadioButtond.isSelected ())
JjTextFieldl.setText ("Thursday")
; else if (jRadioButtonb5.isSelected())
JjTextFieldl.setText ("Friday") ;
else if (jRadioButton6.isSelected())
JTextFieldl.setText ("Saturday")
; else if (jRadioButton7.isSelected())
JTextFieldl.setText ("Sunda
y"); else
JjTextFieldl.setText ("Day - Not Selected");

Figure 5.54 Code for the Week Day Finder Application

The above code introduces us to a new method called isSelected(). This method is
used to check whether a particular radio button is selected or not. The syntax of this
method is given below:

Syntax:
JRadioButton.isSelected()

This method returns a boolean value i.e. true or false. The true indicates that the
radio button is selected and false indicates that the radio button is not selected.

Let us now understand the code in detail. Since the code in each subsequent else is
almost the same except the display text, so we will try and understand the first three
lines.

if (jRadioButton1.isSelected())
e check whether the first radio button is selected or not
if (jRadioButton1.isSelected()) jTextField1.setText("Monday")

e Display "Monday" in the text field if the first radio button is
selected

if (jRadioButton1.isSelected()) jTextField1.setText("Monday")

else if (jRadioButton2.isSelected())

e If the first radio button is not selected then check whether the
second radio button is selected or not

Note that to handle multiple conditions, we have used a series of if-else
statements. Such a if else statement is called nested if else statement. In this
form the if statement checks each of the conditions one by one from top to
bottom until it finds one that is true. In case none of the conditions are true
then the statement corresponding to the last else is executed. Therefore, in
case none of the jRadioButton is selected then "Day - Not Selected" will be
displayed.

Switch Statement -

This selection statement allows us to test the value of an expression with a
series of character or integer values. On finding a matching value the control
jumps to the statement pertaining to that value and the statement is
executed, till the break statement is encountered or the end of switch is
reached. The expression must either evaluate to an integer value or a
character value. It cannot be a string or a real number. The syntax of the
switch statement is as follows:

switch (Variable/Expression)

{
case Valuel:statementsl ;
break ;
case Value2:statements2 ;
break ;
default:statements3 ;
}

After understanding the working of switch statement, let us now develop a discount calculator
using the switch statement. Design the form as shown in Figure 6.30. The Customer is given
a discount on the Bill Amount depending upon the Customer Type selected from the combo

box. Discount is calculated as follows:

Customer Type Discount
Platinum 30%

Gold 20%

Silver 10%

New Customer No Discount

When the application is executed the discount amountis deducted from the Bill Amount
depending upon the Customer Type selected by the user.

When Customer Type is Silver the customer gets a discount of 10% as shown in figure 5.55.

When Customer Type is Gold the customer gets a discount of 20% and when
Customer Type is Platinum the customer gets a discount of 30% on the Bill Amount.

- Discount Calculator

Bll Amount 500
Selected Customer
Qustomer Type Silver v Typeie b
therefore only 10%
Caloulate Final Amount STOP discount is given
Final Amount 4500

Figure 5.55 Discount of 10% for Customer Type Silver

Let us now write the code for the discount calculator as shown in 5.56.

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt)
{
// Code to calculate discount depending upon customer type:
double FinalAmount=0;
double BillAmount = Double.parseDouble (jTextFieldl.getText()) ;
switch (jComboBoxl .getSelectedIndex())
{
case 0: FinalAmount=BillAmount; //No Discount for
new customer break;
case 1: FinalAmount=0.90*BillAmount; //10% Discount
for silver break;
case 2: FinalAmount=0.80*BillAmount; //20%
Discount for gold break;
case 3: FinalAmount=0.70*BillAmount;//30%

Discountfor platinum break;
default:FinalAmount=BillAmount;

}
JjTextField2.setText (Double.toString (FinalAmount)) ;

Figure 6.31 Code for Discount Calculator Using switch Statement

Now let us understand the code in detail.
double FinalAmount=0;

e Declare a variable FinalAmount of type double and initialize it to 0.
double BillAmount = Double.parseDouble(jTextField1.getText());

e Declare avariable BilAmount of type double and initialize it with the
value retrieved from the text field (using the getText() method) after
converting it to type double (using the parseDouble() method)

switch(jComboBox1.getSelectedindex())

e The index of the selected item is retrieved using the getSelectedindex()
method and on the basis of this value the control is transferred using
switch statement

case 1: FinalAmount=0.90*BilAmount;

e If the second value in the combo box is selected then the FinalAmount
is calculated by multiplying the BillAmount by 0.90 (to give a discount
of 10%)

break;
e Stop the execution of the switch statement and transfer the control to

the statement immediately following the closing brace of the switch
statement. It has to be included as the last statement of each case.

default: FinalAmount= BillAmount

° When getSelectedindex() is not equal to either 1,2 or 3 then the code moves
to default statement and no discount is given to the customer.

Comparing Switch and If..else Statements - Switch is used to select sections of code
depending on specific integer or character values. If we are handling specific coded
values (eg, the number of the button that was clicked in a JOptionPane), or processing
characters(whose codes are treated like numbers), then switch is useful. The limitations
of switch are as follows:

. It doesn't allow ranges, eg case 90-100.

« It requires either integers or characters and doesn't allow useful
types like String.
String comment; // The generated result.

int choice = Integer.ParselInt (jTextField.getText) ;
//Enter 0, 1, or 2.

switch (choice)

{
case 0: comment = "You look so much better
than usual."; break;
case 1: comment = "Your work is up to its usual
standards."; break;
case 2: comment =
"You're quite competent for so little
experience."; break;
default: comment =
"Oops -- something is wrong with this code.";
}

Equivalent if statement

String comment; // The generated result.

int choice= Integer.ParseInt (jTextField.getText) ;

//Enter is O,

l,or 2. if (choice == 0)

comment = "You look so much better than
usual."; else if (choice == 1)

comment = "Your work is up to its usual
standards."; else if (choice == 2)

comment="You're quite competent for so little
experience"; else

comment = "Oops -- something is wrong with this code.";

A switch statement can often be rewritten as an if statement. Let us look at the example given
above, when a selection is to be made based on a single value, the switch statementisgenerally
easier to read. The switch is useful when you need to manage alot of if /else if /else. lthas a
shorter syntax and is more appropriate in this case.

Points to Remember:

. NetBeans is an IDE using which we can develop GUI applications in Java.

. NetBeans provides various components used to create a GUI front-end
interface.

. GUI components' appearance and behaviour is controlled by their
properties and methods.

. We should use meaningful names for controls on the form and variables
in the code. It makes programming convenient.

. Some useful Data Types supported in Java are: int, double, char and boolean.

. String is an Object (reference) type supported in Java.

. A variable must be declared before it can be used.

. Different types of operators are available in Java. Operators are used to
perform various operations on data.

. The if statement selects among a set of statements depending on the
value of a controlling expression.

EXERCISES

MULTIPLE CHOICE QUESTIONS

1. What will be the final value of sum1 after the execution of the
program given below?

int suml = 3; suml=suml+l;
jTextFieldl.setText (""+suml) ;
suml=suml+l; jTextField2.setText(""+suml) ;
suml=suml+1l;
jTextField3.setText (""+ (suml)) ;
suml=suml+1l;
jTextField4.setText (""+suml) ;
jTextField5.setText (""+suml) ;
5 b. 6
C. 4 d. 7
Consider the following code snippet :
int anumber=14;
if (anumber >=10)
jLabell.setText ("first string");
else
jLabell.setText ("second string");

jLabel2.setText ("third string");

What will be the output when anumber=14

=

first string ond string

o

first string .ond string

rd string rd string

What's wrong with the following statement?
if((ctr < 5) && (ctr > 30))
a the logical operator && cannot be used in a
test condition.
b the test condition is always false.
C the test condition is always true.

If there is more than one statement in the block of a if statement, which of the
following must be placed at the beginning and the ending of the loop block?

a parentheses () b French curly braces{}
c brackets[] d arrows <>

Given the following information:

inta=11;
intb=22; intc=33; intd =11;

Which of the following statements are true :

a==b ii) b 1=d iii) c<=b

iv) a<c V) a==d vi) c>a
vii) a>=c

a i),iv) & vii) b ii),iv), v) & vi)

C ii),iv), vi) & vii) d iii),v),vi) & vii)

ANSWER THE FOLLOWING QUESTIONS

Explain the following terms:
a) IDE

b) Inspector Window

c) Form

Differentiate between :

a) TextField and TextArea

coO N o U1 AN

b) ComboBox and ListBox

C) getText() and setText()

What is the significance of the following properties in

TextArea ? LineWrap WrapStyleWord

What are list type controls used for ?

How would you determine whether a combo boxis editable or not?

List different selection modes of a list.

What is a button group? Which control is generally used with a buttongroup.

Write and explain two methods each of check box and radio button.

LAB EXERCISES

Design a GUI application in which the user enters a three digit number in the text
field and on clicking the button the sum of the digits of the number should be
displayed in a label.

Hint : Suppose user enters 123 the output should be 6(1+2+3).

Design a GUI application to accept a number from the user in a text field and print
using option pane whether it is a positive even number or not.

Design a GUI application to accept the cost price and selling price form the user in
two text fields then calculate the profit or loss incurred.

Design a GUI application to accept a characterin a text field and printin a label if
that character is a vowel: a, e, i, 0, or u. The application should be case sensitive.

Design a GUI application in java to convert temperature from Celsius to Fahrenheit
or vice versa using radio buttons and two text fields

Design a GUI application in java to convert kilograms into grams, litres into
milliliters, rupees into paisa using combobox and text fields.

A book publishing house decided to go in for computerization. The database will be
maintained at the back end but you have to design the front end for the company.
You have to accept book code, Title, Author and Quantity sold fromthe user. The
Price will be generated depending upon the book code. Net price should be
calculated on the basis of the discount given.

Book seller - 25%

School -20%

Customer - 5%

A networking company decided to computerize its employee salary . Develop an
application to store employee's personal data which will be saved in the back end.
The front end should accept Name, Father's Name, Mother's Name, Address,
Gender, Basic Salary, Medical and Conveyance. Calculate gross and net salary.

Basic DA HRA
>=40000 35% 37%
>=20000 25% 32%

>=10000 25% 30%

