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1.0 Objective 
The objective of this lesson is to provide an introduction to the definitions, techniques, 
components and applications of Artificial Intelligence. Upon completion of this lesson 
students should able to answer the AI problems, Techniques, and games. This lesson also 
gives an overview about expert system, search knowledge and abstraction.   

 
1.1 Introduction 
 
Artificial Intelligence (AI) is the area of computer science focusing on creating 
machines that can engage on behaviors that humans consider intelligent.  The 
ability to create intelligent machines has intrigued humans since ancient times, 
and today with the advent of the computer and 50 years of research into AI 
programming techniques, the dream of smart machines is becoming a reality. 
Researchers are creating systems which can mimic human thought, understand 
speech, beat the best human chess player, and countless other feats never 
before possible.  
 
 
What is Artificial Intelligence (AI)? 
According to Elaine Rich, “Artificial Intelligence “ 
 
“Artificial Intelligence is the study of how to make computers do things at 
which, at the moment, people are better”. 
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In what way computer & Human Being are better? 
 
Computers Human Being  
1. Numerical Computation is fast 1. Numerical Computation is slow 
2. Large Information Storage Area 2. Small Information Storage Area 
3. Fast Repetitive Operations 3. Slow Repetitive Operations 
4. Numeric Processing 5. Symbolic Processing 
5.Computers are just Machine 
(Performed Mechanical “Mindless” 
Activities) 

4. Human Being is intelligent (make 
sense from environment)  

  
  
Other Definitions of Artificial Intelligence 
 
According to Avron Barr and Edward A. Feigenbaum, “ The Handbook of Artificial 
Intelligence”, the goal of AI is to develop intelligent computers. Here intelligent 
computers means that emulates intelligent behavior in humans. 
 
“Artificial Intelligence is the part of computer science with designing 
intelligent computer systems, that is, systems that exhibit the 
characteristics we associate with intelligence in human behavior.”  
 
Other definitions of AI are mainly concerned with symbolic processing, heuristics, 
and pattern matching.   
 
Symbolic Processing 
According to Bruce Buchanan and Edward Shortliffe” Rule Based Expert 
Systems” (reading MA: Addison-Wesley, 1984), p.3. 
“Artificial Intelligence is that branch of computer science dealing with 
symbolic, non algorithmic methods of problem solving.” 
 
Heuristics 
 According to Bruce Buchanan and Encyclopedic Britannica, heuristics as a key 
element of a Artificial Intelligence:  
 
“Artificial Intelligence is branch of computer science that deals with ways 
of representing knowledge using symbols rather than numbers and with 
rules-of-thumb or heuristics, methods for processing information.”  
 
A heuristics is the “rule of thumb” that helps us to determine how to proceed. 
 
Pattern Matching 
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According to Brattle Research Corporation, Artificial Intelligence and Fifth 
Generation Computer Technologies, focuses on definition of Artificial Intelligence 
relating to pattern matching. 
 
“In simplified terms, Artificial Intelligence works with the pattern matching 
methods which attempts to describe objects, events, or processes in terms 
of their qualitative features and logical and computational relationships.” 
 
Here this definition focuses on the use of pattern matching techniques in an 
attempt to discover the relationships between activities just as human do. 
 
1.2 Application of Artificial Intelligence 
 
1.2.1.0 Games 
Game playing is a search problem Defined by 
– Initial state 
– Successor function 
– Goal test 
– Path cost / utility / payoff function 

Games provide a structured task wherein success or failure can be measured 
with latest effort. Game playing shares the property that people who do them well 
are considered to be displaying intelligence. There are two major components of 
game playing, viz., a plausible move generator, and a static evaluation function 
generator. Plausible move generator is used to expand or generates only 
selected moves. Static evaluation function generator, based on heuristics 
generates the static evaluation function value for each & every move that is being 
made. 

1.2.1.1 Chess 

 
AI-based game playing programs combine intelligence with entertainment. On 
game with strong AI ties is chess. World-champion chess playing programs can 
see ahead twenty plus moves in advance for each move they make. In addition, 
the programs have an ability to get progressably better over time because of the 
ability to learn. Chess programs do not play chess as humans do. In three 
minutes, Deep Thought (a master program) considers 126 million moves, while 
human chessmaster on average considers less than 2 moves. Herbert Simon 
suggested that human chess masters are familiar with favorable board positions, 
and the relationship with thousands of pieces in small areas. Computers on the 
other hand, do not take hunches into account. The next move comes from 
exhaustive searches into all moves, and the consequences of the moves based 
on prior learning. Chess programs, running on Cray super computers have 
attained a rating of 2600 (senior master), in the range of Gary Kasparov, the 
Russian world champion.  
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1.2.1.2 Characteristics of game playing 
 

 “Unpredictable” opponent. 
      Solution is a strategy specifying a move for every possible opponent 
reply. 
 

 Time limits. 
      Unlikely to find goal, must approximate. 

 
1.2.2 Theorem Proving 
 
Theorem proving has the property that people who do them well are considered 
to be displaying intelligence. The Logic Theorist was an early attempt to prove 
mathematical theorems. It was able to prove several theorems from the Qussells 
Principia Mathematica. Gelernters’ theorem prover explored another area of 
mathematics: geometry. There are three types of problems in A.I. Ignorable 
problems, in which solution steps can be ignored; recoverable problems in which 
solution steps can be undone; irrecoverable in which solution steps cannot be 
undone. Theorem proving falls into the first category i.e. it is ignorable suppose 
we are trying to solve a theorem, we proceed by first proving a lemma that we 
think will be useful. Eventually we realize that the lemma is not help at all. In this 
case we can simply ignore that lemma, and can start from beginning. 
 
There are two basics methods of theory proving. 

 Start with the given axioms, use the rules of inference and prove the 
theorem. 

 Prove that the negation of the result cannot be TRUE. 
 
 
1.2.3 Natural Language Processing 
 
The utility of computers is often limited by communication difficulties. The 
effective use of a computer traditionally has involved the use of a programming 
language or a set of commands that you must use to communicate with the 
computer. The goal of natural language processing is to enable people and 
computer to communicate in a “natural “(human) language, such as a English, 
rather than in a computer language. 
 The field of natural language processing is divided into the two sub-fields 
of: 

 Natural language understanding, which investigates methods of allowing 
computer to comprehend instruction given in ordinary English so that 
computers can understand people more easily. 
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 Natural language generation, which strives to have computers produce 
ordinary English language so that people can understand computers more 
easily. 

 
 
 
 
1.2.4 Vision and Speech Processing 
 
The focus of natural language processing is to enable computers to 
communicate interactively with English words and sentences that are typed on 
paper or displayed on a screen. However, the primary interactive method of 
communication used by humans is not reading and writing; it is speech. 
The goal of speech processing research is to allow computers to understand 
human speech so that they can hear our voices and recognize the words we are 
speaking. Speech recognition research seeks to advance the goal of natural 
language processing by simplifying the process of interactive communication 
between people and computers. It is a simple task to attach a camera to 
computer so that the computer can receive visual images. It has proven to be a 
far more difficult task, however, to interpret those images so that the computer 
can understand exactly what it is seeing. People generally use vision as their 
primary means of sensing their environment; we generally see more than we 
hear, feel, smell or taste. The goal of computer vision research is to give 
computers this same powerful facility for understanding their surroundings. 
Currently, one of the primary uses of computer vision is in the area of robotics. 
 
 
1.2.5 Robotics 
 
A robot is an electro-mechanical device that can be programmed to perform 
manual tasks. The Robotic Industries Association formally defines a robot as “a 
reprogrammable multi-functional manipulator designed to move material, parts, 
tools or specialized devices through variable programmed motions for the 
performance of a variety of tasks.” An “intelligent” robot includes some kind of 
sensory apparatus, such as a camera, that allows it to respond to changes in its 
environment, rather than just to follow instructions “mindlessly.” 
 
1.2.6 Expert System 
 
 An expert system is a computer program designed to act as an expert in a 
particular domain (area of expertise). Also known as a knowledge-based system, 
an expert system typically includes a sizable knowledge base, consisting of facts 
about the domain and heuristics (rules) for applying those facts. Expert system 
currently is designed to assist experts, not to replace them. They have proven to 
be useful in diverse areas such as computer system configuration. 
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A ``knowledge engineer'' interviews experts in a certain domain and tries to 
embody their knowledge in a computer program for carrying out some task. How 
well this works depends on whether the intellectual mechanisms required for the 
task are within the present state of AI. When this turned out not to be so, there 
were many disappointing results. One of the first expert systems was MYCIN in 
1974, which diagnosed bacterial infections of the blood and suggested 
treatments. It did better than medical students or practicing doctors, provided its 
limitations were observed. Namely, its ontology included bacteria, symptoms, 
and treatments and did not include patients, doctors, hospitals, death, recovery, 
and events occurring in time. Its interactions depended on a single patient being 
considered. Since the experts consulted by the knowledge engineers knew about 
patients, doctors, death, recovery, etc., it is clear that the knowledge engineers 
forced what the experts told them into a predetermined framework. In the present 
state of AI, this has to be true. The usefulness of current expert systems depends 
on their users having common sense.  
 
 
1.3 AI Techniques 
 
There are various techniques that have evolved that can be applied to a variety 
of AI tasks - these will be the focus of this course. These techniques are 
concerned with how we represent, manipulate and reason with knowledge in 
order to solve problems.  

1.3.1 Knowledge Representation 

Knowledge representation is crucial. One of the clearest results of artificial 
intelligence research so far is that solving even apparently simple problems 
requires lots of knowledge. Really understanding a single sentence requires 
extensive knowledge both of language and of the context. For example, today's 
(4th Nov) headline ``It's President Clinton'' can only be interpreted reasonably if 
you know it's the day after the American elections. [Yes, these notes are a bit out 
of date]. Really understanding a visual scene similarly requires knowledge of the 
kinds of objects in the scene. Solving problems in a particular domain generally 
requires knowledge of the objects in the domain and knowledge of how to reason 
in that domain - both these types of knowledge must be represented. Knowledge 
must be represented efficiently, and in a meaningful way. Efficiency is important, 
as it would be impossible (or at least impractical) to explicitly represent every fact 
that you might ever need. There are just so many potentially useful facts, most of 
which you would never even think of. You have to be able to infer new facts from 
your existing knowledge, as and when needed, and capture general abstractions, 
which represent general features of sets of objects in the world.  
 
Knowledge must be meaningfully represented so that we know how it relates 
back to the real world. A knowledge representation scheme provides a mapping 
from features of the world to a formal language. (The formal language will just 
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capture certain aspects of the world, which we believe are important to our 
problem - we may of course miss out crucial aspects and so fail to really solve 
our problem, like ignoring friction in a mechanics problem). Anyway, when we 
manipulate that formal language using a computer we want to make sure that we 
still have meaningful expressions, which can be mapped back to the real world. 
This is what we mean when we talk about the semantics of representation 
languages. 

1.3.2 Search 

Another crucial general technique required when writing AI programs is search. 
Often there is no direct way to find a solution to some problem. However, you do 
know how to generate possibilities. For example, in solving a puzzle you might 
know all the possible moves, but not the sequence that would lead to a solution. 
When working out how to get somewhere you might know all the 
roads/buses/trains, just not the best route to get you to your destination quickly. 
Developing good ways to search through these possibilities for a good solution is 
therefore vital. Brute force techniques, where you generate and try out every 
possible solution may work, but are often very inefficient, as there are just too 
many possibilities to try. Heuristic techniques are often better, where you only try 
the options, which you think (based on your current best guess) are most likely to 
lead to a good solution. 
 
1.4 Search Knowledge 

In order to solve the complex problems encountered in artificial intelligence, one 
needs both a large amount of knowledge and some mechanisms for 
manipulating that knowledge to create solutions to new problems. That is if we 
have knowledge that it is sufficient to solve a problem, we have to search our 
goal in that knowledge. To search a knowledge base efficiently, it is necessary to 
represent the knowledge base in a systematic way so that it can be searched 
easily. Knowledge searching is a basic problem in Artificial Intelligence. The 
knowledge can be represented either in the form of facts or in some formalism. A 
major concept is that while intelligent programs recognize search, search is 
computationally intractable unless it is constrained by knowledge about the 
world. In large knowledge bases that contain thousands of rules, the intractability 
of search is an overriding concern. When there are many possible paths of 
reasoning, it is clear that fruitless ones not be pursued. Knowledge about path 
most likely to lead quickly to a goal state is often called search control 
knowledge. 
 
1.5 Abstraction 
 
Abstraction a mental facility that permits humans to view real-world problems 
with varying degrees of details depending on the current context of the problem. 
Abstraction means to hide the details of something. For example, if we want to 
compute the square root of a number then we simply call the function sort in C. 
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We do not need to know the implementation details of this function. Early 
attempts to do this involved the use of macro-operators, in which large operators 
we built from smaller one’s. But in this approach, no details were eliminated from 
actual description of the operators. A better approach was developed in the 
ABSTRIPS system, which actually planned in a hierarchy of abstraction spaces, 
in each of which preconditions at a lower level of abstraction, was ignored. 
 
 
 
 
1.6 Summary 
 
In this chapter, we have defined AI, other definitions of AI & terms closely related 
to the field. Artificial Intelligence (AI) is the part of computer science concerned 
with designing intelligent computer systems, that is, systems that exhibit the 
characteristics. We associate with intelligence in human behavior, other definition 
of AI are concerned with symbolic processing, heuristics, and pattern matching.  
Artificial intelligence problems appear to have very little in common except that 
they are hard. Areas of AI research have been evolving continually. However, as 
more people identify research-taking place in a particular area as AI, that are will 
tend to remain a part of AI. This could result in a more static definition of Artificial 
Intelligence. Currently, the most well known area of AI research is expert system, 
where programs include expert level knowledge of a particular field in order to 
assist experts in that field. Artificial Intelligence is best understood as an 
evolution rather than a revolution, some of popular application areas of AI include 
games, theorem proving, natural language processing, vision, speech 
processing, and robotics.   
 
1.7 Key Words 
 
Artificial Intelligence (AI), Games, Theorem Proving, Vision and Processing, 
Natural Language Processing, Robotics, Expert System, Search Knowledge.  
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1.8 Self Assessment Questions (SAQ) 
 
Q1. A key element of AI is a/an _________, which is a “rule of thumb”. 
        a. Heuristics  
        b. Cognition  
        c. Algorithm 
        d. Digiton 
 
Q2. One definition of AI focuses on problem solving methods that process:  

a. Numbers 
b. Symbols 
c. Actions 
d. Algorithms 
 

Q3   Intelligent planning programs may be of speed value to managers with             
       ________ Responsibilities. 

a. Programming  
b. Customer source 
c.  Personal administration  
d.  Decision making 
 

Q4. What is AI? Explain different definition of AI with different application of AI. 
 
Q5. Write short note on the following: - 

a. Robotics 
b. Expert system  
c. Natural Language Processing  
d. Vision of Speech Processing  
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2.0 Objective 
The objective of this lesson is to provide an overview of problem representation 
techniques, production system, search space control and hill climbing. This lesson also 
gives in depth knowledge about the searching techniques. After completion of this lesson, 
students are able to tackle the problems related to problem representation, production 
system and searching techniques. 
 
2.1 Introduction 
 
Before a solution can be found, the prime condition is that the problem must be 
very precisely defined.  By defining it properly, one can convert it into the real 
workable states that are really understood. These states are operated upon by a 
set of operators and the decision of which operator to be applied, when and 
where is dictated by the overall control strategy.  

Problem must be analysed. Important features land up having an immense 
impact on the appropriateness of various possible techniques for solving the 
problem. 
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Out of the available solutions choose the best problem-solving technique(s) and 
apply the same to the particular problem. 
 
 
 
2.2 Defining state space of the problem 
 
A set of all possible states for a given problem is known as state space of the 
problem.  Representation of states is highly beneficial in AI because they provide 
all possible states, operations and the goals. If the entire sets of possible states 
are given, it is possible to trace the path from the initial state to the goal state and 
identify the sequence of operators necessary for doing it. 
 
 

Example: Problem statement "Play chess."  

To discuss state space problem, let us take an example of  “play chess”. Inspite 
of the fact that there are a many people to whom we could say that and 
reasonably expect that they will do as we intended, as our request now stands its 
quite an incomplete statement of the problem we want solved. To build a 
program that could "Play chess," first of all we have to specify the initial position 
of the chessboard, any and every rule that defines the legal move, and the board 
positions that represent a win for either of the sides. We must also make explicit 
the previously implicit goal of not only playing a legal game of chess but also goal 
towards winning the game. 

 

Figure 2.1: One Legal Chess Move 

Its quite easy to provide an acceptable complete problem description for the 
problem "Play chess,” The initial position can be described as an 8-by-8 array 
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where each position contains a symbol standing for the appropriate piece in the 
official chess opening position. Our goal can be defined as any board position in 
which either the opponent does not have a legal move or opponent’s king is 
under attack. The path for getting the goal state from an initial state is provided 
by the legal moves. Legal moves are described easily as a set of rules consisting 
of two parts: a left side that serves as a pattern to be matched against the current 
board position and a right side that describes the change to be made to the 
board position to reflect the move. There are several ways in which these rules 
can be written. For example, we could write a rule such as that shown in Figure 
2.1. 

In case we write rules like the one above, we have to write a very large number 
of them since there has to be a separate rule for each of the roughly 10120 
possible board positions. Using so many rules poses two serious practical 
difficulties: 

• We will not be able to get a complete set of rules. If at all we manage then 
it is likely to take too long and will certainly be consisting of mistakes. 

• Any program will not be able to handle these many rules. Although a 
hashing scheme could be used to find the relevant rules for each move 
fairly quickly, just storing that many rules poses serious difficulties. 

One way to reduce such problems could possibly be that write the rules 
describing the legal moves in as general a way as possible. To achieve this we 
may introduce some convenient notation for describing patterns and 
substitutions. For example, the rule described in Figure 2.1, as well as many like 
it, could be written as shown in Figure 2.2. In general, the more efficiently we can 
describe the rules we need, the less work we will have to do to provide them and 
the more efficient the program that uses them can be. 

 

 

 

 

 

 

Figure 2.2: Another Way to Describe Chess Moves 

Problem of playing chess has just been described as a problem of moving 
around, in a state space, where a legal position represents a state of the board. 
Then we play chess by starting at an initial state, making use of rules to move 
from one state to another, and making an effort to end up in one of a set of final 
states. This state space representation seems natural for chess because the set 
of states, which corresponds to the set of board positions, is artificial and well 
organized. This same kind of representation is also useful for naturally occurring, 
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less well-structured problems, although we may need to use more complex 
structures than a matrix to describe an individual state. The basis of most of the 
AI methods we discuss here is formed by the State Space representations. Its 
structure corresponds to the structure of problem solving in two important ways: 

 Representation allows for a formal definition of a problem using a set of 
permissible operations as the need to convert some given situation into 
some desired situation. 

 We are free to define the process of solving a particular problem as a 
combination of known techniques, each of which are represented as a rule 
defining a single step in the space, and search, the general technique of 
exploring the space to try to find some path from the current state to a 
goal state.  

Search is one of the important processes the solution of hard problems for which 
none of the direct techniques is available. 

 

2.3 Production Systems 

A production system is a system that adapts a system with production rules. 

 A production system consists of:  

• A set of rules, each consisting of a left side and a right hand side. Left hand 
side or pattern determines the applicability of the rule and a right side 
describes the operation to be performed if the rule is applied. 

• One or more knowledge/databases that contain whatever information is 
appropriate for the particular task. Some parts of the database may be 
permanent, while other parts of it may pertain only to the solution of the 
current problem. The information in these databases may be structured in any 
appropriate way. 

• A control strategy that specifies the order in which the rules will be compared 
to the database and a way of resolving the conflicts that arise when several 
rules match at once. 

• A rule applier. 

Production System also encompasses a family of general production system 
interpreters, including: 

• Basic production system languages, such as OPS5 and ACT* 

• More complex, often hybrid systems called expert system shells, which 
provide complete (relatively speaking) environments for the construction of 
knowledge-based expert systems.  
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• General problem-solving architectures like SOAR [Laird et al., 1987], a 
system based on a specific set of cognitively motivated hypotheses about the 
nature of problem solving. 

Above systems provide the overall architecture of a production system and allow 
the programmer to write rules that define particular problems to be solved. 

In order to solve a problem, firstly we must reduce it to one for which a precise 
statement can be given. This is done by defining the problem's state space, 
which includes the start and goal states and a set of operators for moving 
around in that space. The problem can then be solved by searching for a path 
through the space from an initial state to a goal state. The process of solving 
the problem can usefully be modelled as a production system. In production 
system we have to choose the appropriate control structure so that the search 
can be as efficient as possible. 

 

2.4  Search Space Control 

The next step is to decide which rule to apply next during the process of 
searching for a solution to a problem. This decision is critical since often more 
than one rule (and sometimes fewer than one rule) will have its left side match 
the current state. We can clearly see what a crucial impact they will make on how 
quickly, and even whether, a problem is finally solved. There are mainly two 
requirements to of a good control strategy. These are: 

1. A good control strategy must cause motion 

2. A good control strategy must be systematic: A control strategy is not 
systematic; we may explore a particular useless sequence of operators 
several times before we finally find a solution. The requirement that a 
control strategy be systematic corresponds to the need for global motion 
(over the course of several steps) as well as for local motion (over the 
course of a single step). One systematic control strategy for the water jug 
problem is the following. Construct a tree with the initial state as its root. 
Generate all the offspring of the root by applying each of the applicable 
rules to the initial state.  

Now, for each leaf node, generate all its successors by applying all the rules that 
are appropriate. Continuing this process until some rule produces a goal state. 
This process, called breadth-first search, can be described precisely in the 
breadth first search algorithm. 

 

2.5 Depth First Search 

The searching process in AI can be broadly classified into two major types. 
Viz. Brute Force Search and Heuristics Search.  Brute Force Search do not 
have any domain specific knowledge. All they need is initial state, the final 
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state and a set of legal operators. Depth-First Search is one the important 
technique of Brute Force Search. 

In Depth-First Search, search begins by expanding the initial node, i.e., by 
using an operator, generate all successors of the initial node and test them.  
Let us discuss the working of DFS with the help of the algorithm given below. 

Algorithm for Depth-First Search 

1. Put the initial node on the list of START. 

2. If (START is empty) or (START = GOAL) terminate search. 

3. Remove the first node from the list of START. Call this node d. 

4. If (d = GOAL) terminate search with success. 

5. Else if node d has successors, generate all of them and add them at the 
beginning of START. 

6. Go to step 2. 

 

In DFS the time complexity and space complexity are two important factors 
that must be considered. As the algorithm and Fig. 2.3 shows, a goal would 
be reached early if it is on the left hand side of the tree. 

 

Root
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Fig: 2.3 Search tree for Depth-first search 
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The major drawback of Depth-First Search is the determination of the depth 
(cut-off depth) until which the search has to proceed. The value of cut-off 
depth is essential because otherwise the search will go on and on. 

 

2.5  Breadth First Search   

 

Breadth first search is also like depth first search. Here searching progresses 
level by level. Unlike depth first search, which goes deep into the tree. An 
operator employed to generate all possible children of a node.  Breadth first 
search being the brute force search generates all the nodes for identifying the 
goal.  

 

Algorithm for Breadth-First Search 

1. Put the initial node on the list of START. 

2. If (START is empty) or (START = GOAL) terminate search. 

3. Remove the first node from the list of START. Call this node d. 

4. If (d = GOAL) terminate search with success. 

5. Else if node d has successors, generate all of them and add them at the 
tail of START. 

6. Go to step 2. 

Fig. 2.4 gives the search tree generated by a breadth-first search. 
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 Fig: 2.4 Search tree for Breadth-first search 

 

Similar to brute force search two important factors time-complexity and space-
complexity have to be considered here also.   

The major problems of this search procedure are: - 

1. Amount of time needed to generate all the nodes is considerable because 
of the time complexity. 

2. Memory constraint is also a major hurdle because of space complexity.  

3. The Searching process remembers all unwanted nodes, which is of no 
practical use for the search. 

 

2.6 Heuristic Search Techniques 

The idea of a "heuristic" is a technique, which sometimes will work, but not 
always. It is sort of like a rule of thumb. Most of what we do in our daily lives 
involves heuristic solutions to problems. Heuristics are the approximations used 
to minimize the searching process. 

The basic idea of heuristic search is that, rather than trying all possible search 
paths, you try and focus on paths that seem to be getting you nearer your goal 
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state. Of course, you generally can't be sure that you are really near your goal 
state - it could be that you'll have to take some amazingly complicated and 
circuitous sequence of steps to get there. But we might be able to have a good 
guess. Heuristics are used to help us make that guess.  

To use heuristic search you need an evaluation function (Heuristic function)  that 
scores a node in the search tree according to how close to the target/goal state it 
seems to be. This will just be a guess, but it should still be useful. For example, 
for finding a route between two towns a possible evaluation function might be a 
``as the crow flies'' distance between the town being considered and the target 
town. It may turn out that this does not accurately reflect the actual (by road) 
distance - maybe there aren't any good roads from this town to your target town. 
However, it provides a quick way of guessing that helps in the search.  

Basically heuristic function guides the search process in the most profitable 
direction by suggesting which path to follow first when more than one is 
available. The more accurately the heuristic function estimates the true merits of 
each node in the search tree (or graph), the more direct the solution process. In 
the extreme, the heuristic function would be so good that essentially no search 
would be required. The system would move directly to a solution. But for many 
problems, the cost of computing the value of such a function would outweigh the 
effort saved in the search process. After all, it would be possible to compute a 
perfect heuristic function by doing a complete search from the node in question 
and determining whether it leads to a good solution. Usually there is a trade-off 
between the cost of evaluating a heuristic function and the savings in search time 
that the function provides. 

There the following algorithms make use of heuristic evaluation function. 

 Hill Climbing  

 Best First Search 

 Constraints Satisfaction 

 

2.7  Hill Climbing 

Hill climbing uses a simple heuristic function viz., the amount of distance the 
node is from the goal. This algorithm is also called Discrete Optimization 
Algorithm. Let us discuss the steps involved in the process of Hill Climbing 
with the help of an algorithm. 

Algorithm for Hill Climbing Search 

1. Put the initial node on the list of START. 

2. If (START is empty) or (STRAT = GOAL) terminate search.  

3. Remove the first node from the list of START. Call this node d.  
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4. If (d = GOAL) terminate search with success.    

5. Else if node d has successors, generate all of them. Find out how far they 
are from the goal node. Sort them by the remaining distance from the goal 
and add them to the beginning of START.  

6. Go to step 2. 

 

The algorithm for hill-climbing Fig. 2.5 
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Fig. 2.5 Search tree for hill-climbing procedure 
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Problems of Hill Climbing Technique 

Local Maximum: A state that is better than all its neighbours but no so when 
compared to the states that are farther away. 

Plateau: A flat area of search space, in which all the neighbours have the 
same value. 

Ridge: Described as a long and narrow stretch of elevated ground or narrow 
elevation or raised part running along or across a surface by the Oxford 
English Dictionary.   

 

Solution to the problems of Hill Climbing Technique 

 Backtracking for local maximum: Backtracking helps in undoing what 
has been done so far and permits to try a totally different path to attain 
the global peak. 

 A big jump is the solution to escape from the plateau. 

 Trying different paths at the same time is the solution for circumventing 
ridges. 

 

2.8  Best First Search 

Best first search is a little like hill climbing, in that it uses an evaluation 
function and always chooses the next node to be that with the best score. The 
heuristic function used here (evaluation function) is an indicator of how far the 
node is from the goal node. Goal nodes have an evaluation function value of 
zero. 

Algorithm for Best First Search 

1. Put the initial node on the list of START.  

2. If (START is empty) or (STRAT = GOAL) terminate search.  

3. Remove the first node from the list of START. Call this node d.  

4. If (d = GOAL) terminate search with success.    

5. Else if node d has successors, generate all of them. Find out how far they 
are from the goal node. Sort all the children generated so far by the 
remaining distance from the goal. 

6.  Name this list as START 1. 

7. Replace START with START 1.  

8. Go to step 2. 



 22

The path found by best first search are likely to give solutions faster because 
it expands a node that seems closer to the goal.  

 

2.9  Branch and Bound 

Branch and Bound search technique applies to a problem having a graph search 
space where more than one alternate path may exist between two nodes. An 
algorithm for the branch and bound search technique uses a data structure to 
hold partial paths developed during the search are as follows. 

Place the start node of zero path length on the queue. 

1. Until the queue is empty or a goal node has been found: (a) determine if the 
first path in the queue contains a goal node, (b) if the first path contains a 
goal node exit with success, (c) if the first path does not contain a goal node, 
remove the path from the queue and form new paths by extending the 
removed path by one step, (d) compute the cost of the new paths and add 
them to the queue, (e) sort the paths on the queue with lowest-cost paths in 
front. 

2. Otherwise, exit with failure. 

 

2.10 Problem Reduction 

In problem reduction, a complex problem is broken down or decomposed into 
a set of primitive sub problem; solutions for these primitive sub-problems are 
easily obtained. The solutions for all the sub problems collectively give the 
solution for the complex problem.  

 

2.11 Constraints Satisfaction 

Constraint satisfaction is a search procedure that operates in a space of 
constraint sets. The initial state contains the constraints that are originally given 
in the problem description. A goal state is any state that has been constrained 
“enough” where "enough” must be defined for each problem. For example, for 
crypt arithmetic, enough means that each letter has been assigned a unique 
numeric value.  

Constraint satisfaction is a two-step process: - 

1. Constraint are discovered and propagated as far as possible throughout 
the system. Then, if there is still not a solution, search begins. A guess 
about something is made and added as a new constraint. Propagation can 
then occur with this new constraint, and so forth. Propagation arises from 
the fact that there are usually dependencies among the constraints. These 
dependencies occur because many constraints involve more than one 
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object and many objects participate in more than one constraint. So, for 
example, assume we start with one constraint, N=E + 1. Then. if we added 
the constraint N = 3, we could propagate that to get a stronger constraint 
on E, namely l that E = 2. Constraint propagation also arises from the 
presence of inference rules that allow additional constraints to be inferred 
from the ones that are given. Constraint propagation terminates for one of 
two reasons. First, a contradiction may be detected. If this happens, then 
there is no solution consistent with all the known constraints. If the 
contradiction involves only those constraints that were given as part of the 
problem specification (as opposed to ones that were guessed during 
problem solving), then no solution exists. The second possible reason for 
termination is that the propagation has run out of steam and there are no 
further changes that can be made on the basis of current knowledge. If 
this happens and a solution has not yet been adequately specified, then 
search is necessary to get the process moving again.  

2. After we have achieved all that we proceed to the second step where 
some hypothesis about a way to strengthen the constraints must be made. 
In the case of the crypt arithmetic problem, for example, this usually 
means guessing a particular value for some letter. Once this has been 
done, constraint propagation can begin again from this new state. If a 
solution is found, it can be reported. If still guesses are required, they can 
be made. If a contradiction is detected, then backtracking can be used to 
try a different guess and proceed with it.  

 

2.12 Means End Analysis 

The means-ends analysis process centers around the detection of differences 
between the current state and the goal state. The means-ends analysis process 
can then be applied recursively to the sub problem of the main problem. In order 
to focus the system's attention on the big problems first, the differences can be 
assigned priority levels. Differences of higher priority can then be considered 
before lower priority ones. 

Means-ends analysis relies on a set of rules that can transform one problem 
state into another. These rules are usually not represented with complete state 
descriptions on each side. 
 

Algorithm: Means-Ends Analysis (CURRENT, GOAL) 

1. Compare CURRENT with GOAL. If there are no differences between them 
then return.  

2. Otherwise, select the most important difference and reduce it doing the 
following until success or failure is signaled: 
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a. Select an as yet untried operator O that is applicable to the current 
difference. If there are no such operators, then signal failure.  

b. Attempt to apply O to CURRENT. Generate descriptions of two states: 
O-START, a state in which O's preconditions are satisfied and O-
RESULT, the state that would result if O were applied in O-START.  

c.  If (FIRST-PART  MEA (CURRENT, O-START)) and  (LAST-PART  
MEA (O-RESULT, GOAL)) are successful, then signal success and 
return the result of concatenating FIRST-PART,O, and LAST-PART.  

 
In particular, the order in which differences are considered can be critical. It is 
important that significant differences be reduced before less critical ones. If this is 
not done, a great deal of effort may be wasted on situations that take care of 
themselves once the main parts of the problem are solved. The simple process 
we have described is usually not adequate for solving complex problems. The 
number of permutations of differences may get too large; Working on one 
difference may interfere with the plan for reducing another. 
 

2.13 Summary  

In this lesson we have discussed the most common methods of problem 
representation in AI are:  

 State Space Representation.  
 Problem Reduction. 

State Space Representation is highly beneficial in AI because they provide all 
possible states, operators and the goals. In case of problem reduction, a complex 
problem is broken down or decomposed into a set of primitive sub problem; 
solutions for these primitive sub-problems are easily obtained. 

Search is a characteristic of almost all AI problems.  Search strategies can be 
compared by their time and space complexities.  It is important to determine the 
complexity of a given strategy before investing too much programming effort, 
since many search problems are in traceable.    

In case of brute search (Uninformed Search or Blind Search) , nodes in the 
space are explored mechanically until a goal is found, a time limit has been 
reached, or failure occurs. Examples of brute force search are breadth first 
search and death first search. In case of Heuristic Search (Informed Search) cost 
or another function is used to select the most promising path at each point in the 
search. Heuristics evolution functions are used in the best first strategy to find 
good solution paths.  



 25

A solution is not always guaranteed with this type of search, but in most practical 
cases, good or acceptable solutions are often found.   

2.14 Key words  

State Space Representation, Problem Reduction, Depth First Search, Breadth 
First Search, Hill Climbing, Branch & Bound, Best First Search, Constraints 
Satisfactions & Mean End Analysis. 

2.15 Self-assessment questions 
 
Answer the following questions: -  

 
Q1. Discuss various types of problem representation. Also discuss their 
advantages & disadvantages. 
 
Q2. What are various heuristics search techniques? Explain how they are 
different from the search techniques. 
 
Q3.  What do you understand by uniformed search? What are its advantages & 
disadvantages over informed search? What is breadth first search better than 
depth first search better than depth first and vice-versa? Explain. 
 
Q4. Differentiate between following: - 

(a) Local maximum and plateau in hill climbing search. 
(b) Depth first search and breadth first search. 

 
Q5. Write sort notes on the following: - 

(a) Production System  
(b) Constraints Satisfaction 
(c) Mean End Analysis  
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3.0 Objective  
This lesson is providing an introduction about logic and knowledge representation 
techniques. The logic is used to represent knowledge. Various knowledge representation 
schemes are also discussed in detail. Upon the completion of this lesson students are able 
to learn how to represent AI problem(s) with the help of knowledge representation 
schemes. 
 
3.1 The Role of Logic 
 
The use of symbolic logic to represent knowledge is not new in that it predates 
the modern computer by a number of decades. Logic is a formal method of 
reasoning. Many concepts, which can be verbalized, can be translated into 
symbolic representations, which closely approximate the meaning of these 
concepts. These symbolic structures can then be manipulated in programs to 
deduce various facts, to carry out a form of automated reasoning. Logic can be 
defined as a scientific study of the process of reasoning and the system of rules 
and procedures that help in the reasoning process. Basically the logic process 
takes in some information (called premises) and procedures some outputs 
(called conclusions).  Today, First Order Logic (FOPL) or Predicate Logic as it is 
sometimes called, has assumed one of the most important roles in AI for the 
representation of knowledge. It is commonly used in program designs and widely 
discussed in the literature. To understand many of the AI articles and research 
papers requires comprehensive knowledge of FOPL as well as some related 
logics. 
 
3.2 Predicate Logic or First Order Logic 
 
A familiarity with Predicate Logic is important to the student of AI for several 
reasons. 
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 Logic offers the only formal approach to reasoning that has a sound 
theoretical foundation. It is important in our attempts to mechanize or 
automate the reasoning process in that inference should be correct and 
logically sound.  

 The structure of FOPL is flexible enough to permit the accurate 
representation of natural language reasonably well. This is too important 
in AI system since most knowledge must originate with and be consumed 
by humans.  

 FOPL is widely accepted by the workers in the AI field as one of the most 
useful representation methods. 

 
The propositional logic is not powerful enough to represent all types of assertions 
that are used in computer science and mathematics, or to express certain types 
of relationship between propositions such as equivalence.   
 
For example, the assertion "x is greater than 1", where x is a variable, is not 
a proposition because you can not tell whether it is true or false unless you 
know the value of x. Thus the prepositional logic cannot deal with such 
sentences. However, such assertions appear quite often in mathematics 
and we want to do inferencing on those assertions.   
 
Also the pattern involved in the following logical equivalences cannot be 
captured by the propositional logic:   
 
"Not all birds fly" is equivalent to "Some birds don't fly".   
"Not all integers are even" is equivalent to "Some integers are not even".   
"Not all cars are expensive" is equivalent to "Some cars are not expensive",   
 
Each of those propositions is treated independently of the others in propositional 
logic. For example, if P represents "Not all birds fly" and Q represents "Some 
integers are not even", then there is no mechanism in propositional logic to find 
out the P is equivalent to Q. Hence to be used in inferencing, each of these 
equivalences must be listed individually rather than dealing with a general 
formula that covers all these equivalences collectively and instantiating it as they 
become necessary, if only propositional logic is used.   
Thus we need more powerful logic to deal with these and other problems. The 
predicate logic is one of such logic and it addresses these issues among others. 

3.3 Unification Algorithm  

Unification algorithm is the process of identifying unifiers. Unifier is a substitution 
that makes two clauses resolvable.  The unification algorithm tries to find out the 
Most General unifier (MGU) between a given set of atomic formulae.  

In prepositional logic, it is easy to determine that two literals cannot both be true 
at the, same time. Simply look for L and ¬L. In predicate logic, this matching 
process is more complicated since the arguments of the predicates must be 
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considered. For example man (John) and ¬man (John) is a contradiction, while 
man(John) and ¬man(Spot) is not. Thus, in order to determine contradictions, we 
need a matching procedure that compares two literals are discovers whether 
there exists a set of substitutions that makes, them identical. There is a 
straightforward recursive procedure, called the unification algorithm that does just 
this.  

The basic idea of unification is very simple. To attempt to unify two literals, we 
first  check if their initial predicate symbols are the same. If so, we can proceed. 
Otherwise, there is no way they can be unified, regardless of their arguments. 
For example, the two literals  

– tryassassinate(Marcus, Caesar) 

– hate(Marcus, Caesar)  

cannot be unified. If the predicate symbols match, then we must check the 
arguments, one pair at a time. If the first matches, we can continue with the 
second, and so on. To test each argument pair, we can simply call the unification 
procedure recursively. The matching rules are simple. Different constants or 
predicates cannot match; identical ones can. A variable can match another 
variable, any constant, or a predicate expression, with the restriction that the 
predicate expression must not contain any instances of the variable being 
matched.  

The only complication in this procedure is that we must find a single, consistent 
substitution for the entire literal, not separate ones for each piece of it. To do this, 
we must take each substitution that we find and apply it to the remainder of the 
literals before we continue trying to unify them. For example, suppose we want to 
unify the expressions  

P(x, x) 

P(y, z)  

The two instances of P match fine. Next we compare x and y, and decide that if 
we substitute y for x, they could match. We will write that substitution as  

 y/x  

But now, if we simply continue and match x and z, we produce the substitution z/ 
x.  

But we cannot substitute both y and z for x, so we have not produced a 
consistent substitution. What we need to do after finding the first substitution y/x 
is to make that substitution throughout the literals, giving  

P(y,y) 

P(y, z) 
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Now we can attempt to unify arguments y and z, which succeeds with the 
substitution z/y. The entire unification process has now succeeded with a 
substitution that is the  composition of the two substitutions we found. We write 
the composition as  

 (z/y)(y/x)   

following standard notation for function composition. In general, the substitution 
(a1/a2, a3/a4,….)(b1/b2, b3/b4,...)... means to apply all the substitutions of the 
right-most list, then take the result and apply all the ones of the next list, and so 
forth, until all substitutions have been applied.  

The object of the unification procedure is to discover at least one substitution that 
causes two literals to match. Usually, if there is one such substitution there are 
many. For example, the literals  

hate(x,y)  

hate(Marcus,z)  

could be unified with any of the following substitutions:  

(Marcus/x,z/y) 

(Marcus/x,y/z)  

(Marcus/x,Caesar/y,Caesar/z)  

(Marcus/x,Polonius/y,Polonius/z) 

The first two of these are equivalent except for lexical variation. But the second 
two, although they produce a match, also produce a substitution that is more 
restrictive than absolutely necessary for the match. Because the final substitution 
produced by the, unification process will be used by the resolution procedure, it is 
useful to generate the most general unifier possible. The algorithm shown below 
will do that.  

Having explained the operation of the unification algorithm, we can now state it 
concisely. We describe a procedure Unify(L1, L2), which returns as its value a list 
representing the composition of the substitutions that were performed during the 
match. The empty list, NIL, indicates that a match was found without any 
substitutions. The list consisting of the single value FAIL indicates that the 
unification procedure failed. 

Algorithm: Unify (L1, L2)  

1. If L1 or L2 are both variables or constants, then:  

a. If L1 and L2 are identical, then return NIL. 

b. Else if L1 is a variable, then if L1 occurs in L2 then return {FAIL}, else 
return (L2/L1). 
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c. Else if L2 is a variable then if L2 occurs in L1 then return {FAIL}, else , 
return (L1/L2). 

d. Else return {FAIL}. 

2. If the initial predicate symbols in L1 andL2 are not identical, then return 
{FAIL}.  

3. If L1 and L2 have a different number of arguments, then return {FAIL}.  

4. Set SUBST to NIL. (At the end of this procedure, SUBST will contain all the 
substitutions used to unify L1 and L2.)  

5. For i  1 to number of arguments in L1:  

a. Call Unify with the ith argument of L1 and the ith argument of L2, putting 
result in S.  

b. If S contains FAIL then return {FAIL}.  

c. If S is not equal to NIL then:  

i. Apply S to the remainder of both L1 and L2. 

ii. SUBST:= APPEND(S, SUBST) 

6. Return SUBST. 

The only part of this algorithm that we have not yet discussed is the check in 
steps 1(b) and l(c) to make sure that an expression involving a given variable is 
not unified Y with that variable. Suppose we were attempting to unify the 
expressions  

 f(x, x) 

f(g(x), g(x)) 

If we accepted g(x) as a substitution for x, then we would have to substitute it for 
x in the remainder of the expressions. But this leads to infinite recursion since it 
will never be possible to eliminate x.  
Unification has deep mathematical roots and is a useful operation in many AI 
programs, or example, theorem proverbs and natural language parsers. As a 
result, efficient data structures and algorithms for unification have been 
developed. 
 
3.4 Modus Pones   

Modus Pones is a property of propositions that is useful in resolution. It can be 
represented as follows: 

QQPandP ⇒→  

Where P and Q are two clauses. 
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 For example  
      Given: (Joe is a father) 
         And: (Joe is father) → (Joe has child) 
Conclude: (Joe has a child) 
 

3.5 Resolution 

Robinson in 1965 introduced the resolution principle, which can be directly 
applied to any set of clauses. The principal is  

“Given any two clauses A and B, if there is a literal P1 in A which has a 
complementary literal P2 in B, delete P1 & P2 from A and B and construct a 
disjunction of the remaining clauses. The clause so constructed is called 
resolvent of A and B.” 

For example, consider the following clauses 

A: P V Q V R 

B: `p V Q V R 

C: `Q V R  

Clause A has the literal P which is complementary to `P in B. Hence both of 
them deleted and a resolvent (disjunction of A and B after the complementary 
clauses are removed) is generated. That resolvent has again a literal Q whose 
negation is available in C. Hence resolving those two, one has the final 
resolvent. 

A: P V Q V R    (given in the problem) 

B: `p V Q V   (given in the problem) 

D: Q V R (resolvent of A and B) 

C: `Q V R       (given in the problem) 

E: R  (resolvent of C and D) 

 

3.6 Dependency Directed Backtracking 

If we take a depth-first approach to nonmonotonic reasoning, then the following 
scenario is likely to occur often: We need to know a fact, F, which cannot be 
derived monotonically from what we already know, but which can be derived by 
making some assumption A which seems plausible. So we make assumption A, 
derive F, and then derive some additional facts G and H from F. We later derive 
some other facts M and N, but they are completely independent of A and F. A 
little while later, a new fact comes in that invalidates A. We need to rescind our 
proof of F, and also our proofs of G and H since they depended on F. But what 
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about M and N? They didn’t depend on F, so there is no logical need to invalidate 
them. But if we use a conventional backtracking scheme, we have to back up 
past conclusions in the other in which we derived them. So we have to backup 
past M and N, thus undoing them, in order to get back to F, G, H and A. To get 
around this problem, we need a slightly different notion of backtracking, one that 
is based on logical dependencies rather than the chronological order in which 
decisions were made. We call this new method dependency-directed 
backtracking in contrast to chronological backtracking, which we have been using 
up until now. 

Before we go into detail on how dependency-directed backtracking works, it is 
worth pointing out that although one of the big motivations for it is in handling 
nonmonotonic reasoning, it turns out to be useful for conventional search 
programs as well. This is not too surprising when you consider, what any depth-
first search program does is to “make a guess” at something, thus creating a 
branch in the search space. If that branch eventually dies out, then we know that 
at least one guess that led to it must be wrong. It could be any guess along the 
branch. In chronological backtracking we have to assume it was the most recent 
guess ad back up there to try an alternative. Sometimes, though, we have 
additional information that tells us which guess caused the problem. We’d like to 
retract only that guess and the work that explicitly depended on it, leaving 
everything else that has happened in the meantime intact. This is exactly what 
dependency-directed backtracking does.  

As an example, suppose we want to build a program that generates a solution to 
a fairly simple problem, such as finding a time at which three busy people can all 
attend a meeting. One way to solve such a problem is first to make an 
assumption that the meeting will be held on some particular day, say 
Wednesday, add to the database an assertion to that effect, suitably tagged as 
an assumption, and then proceed to find a time, checking along the way for any 
inconsistencies in people’s schedules. If a conflict arises, the statement 
representing the assumption must be discarded and replaced by another, 
hopefully noncontradictory, one. But, of course, any statements that have been 
generated along the way that depend on the now-discarded assumption must 
also be discarded. 

Of course, this kind of situation can be handled by a straightforward tree search 
with chronological backtracking. All assumptions, as well as the inferences drawn 
from them, are recorded at the search node that created them. When a node is 
determined to represent a contradiction, simply backtrack to the next node from 
which there remain unexplored paths. The assumptions and their inferences will 
disappear automatically. The drawback to this approach is illustrated in Figure 
3.1, which shows part of the search tree of a program that is trying to schedule a 
meeting. To do so, the program must solve a constraints satisfaction problem to 
find a day and time at which none of the participants is busy and at which there is 
a sufficiently large room available. 
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In order to solve the problem, the system must try to satisfy one constraint at a 
time. Initially, there is little reason to choose one alternative over another, so it 
decides to schedule the meeting on Wednesday. That creates a new constraint 
that must be met by the rest of the solution. The assumption that the meeting will 
be held on Wednesday is stored at the node it generated. Next the program tries 
to select a time at which all participants are available. Among them, they have 
regularly scheduled daily meetings at all times except 2:00. So 2:00 is chosen as 
the meeting time. But it would not have mattered which day was chosen. Then 
the program discovers that on Wednesday there have no rooms available. So it 
backtracks past the assumption that the day would be Wednesday and tries 
another day, Tuesday. Now it must duplicate the chain of reasoning that led it to 
choose 2:00 as the time because that reasoning was lost when it backtracked to 
reduce the choice of day. This occurred even though that reasoning did not 
depend in any way on the assumption that the day would be Wednesday. By 
withdrawing statements based on the order which they were generated by the 
search process rather than on the basis of responsibility for inconsistency, we 
may waste a great deal of effort.  

 
Figure 3.1: Nondependency-Directed Backtracking 

If we want to use dependency-directed backtracking instead, so that we do not 
waste this effort, then we need to do the following things: 

Associate with each node one or more justifications. Each justification 
corresponds to a derivation process that led to the node. (Since it is possible to 
derive the same node in several different ways, we want to allow for the 
possibility of multiple justifications). Each justification must contain a list of all the 
nodes (facts, rules, assumptions) on which its derivation depended. 

Provide a mechanism that, when given a contradiction node and its justification, 
computes the “no-good” set of assumptions that underline the justification. The 
no-good set is defined to be the minimal set of assumptions such that if you 
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remove any element from the set, the justification will no longer be valid and the 
inconsistent node will no longer be believed. 

Provide a mechanism for considering a no-good set and choosing an assumption 
to retract. 

Provide a mechanism for propagating the result of retracting as assumption. 
This mechanism must cause all of the justifications that depended, however 
indirectly, on the retracted assumption to become invalid. 

 

3.7 Summary 

We have considered prepositional and predicate logics in this lesson as 
knowledge representation schemes.  We have learned that Predicate Logic 
has sound theoretical foundation; it is not expressive enough for many 
practical problems. FOPL, on the other provides a theoretically sound basis 
and permits great latitude of expressiveness. In FOPL one can easily code 
object descriptions and relations among objects as well as general assertions 
about classes of similar objects.  

• Modus Pones is a property of prepositions that is useful in resolution and 
can be represented as QQPandP ⇒→  where P and Q are two clauses. 

• Resolution produces proofs by refutation. 

 Finally, rules, a subset of FOPL, were described as a popular representation 
scheme. 

3.8 Key Words 

Predicate Logic, FOPL, Modus Ponen, Unification, Resolution & Dependency 
Directed Backtracking. 

 

3.9 Self Assessment Questions 

Answer the following Questions:  

Q1. What are the limitations of logic as representation scheme? 

Q2. Differentiate between Propositional  & Predicate Logic.  
 
Q3. Perform resolution on the set of clauses 
A: P V Q V R      B: `P V R                C: `Q   Q: `R 

Q4. Write short notes on the following: 

a. Unification 

b. Modus Ponen 
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c. Directed Backtracking 

d. Resolution 
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4.0 Objective 
The objective of this lesson is to provide an overview of rule-based system. This lesson 
discuss about procedural versus declarative knowledge. Students are come to know how 
to handle the problems, related with forward and backward chaining. Upon completion of 
this lesson, students are able to solve their problems using rule-based system. 

4.1 Introduction 
 
Using a set of assertions, which collectively form the ‘working memory’, and a set 
of rules that specify how to act on the assertion set, a rule-based system can be 
created. Rule-based systems are fairly simplistic, consisting of little more than a 
set of if-then statements, but provide the basis for so-called “expert systems” 
which are widely used in many fields. The concept of an expert system is this: 
the knowledge of an expert is encoded into the rule set. When exposed to the 
same data, the expert system AI will perform in a similar manner to the expert. 
 
Rule-based systems are a relatively simple model that can be adapted to any 
number of problems. As with any AI, a rule-based system has its strengths as 
well as limitations that must be considered before deciding if it’s the right 
technique to use for a given problem. Overall, rule-based systems are really only 
feasible for problems for which any and all knowledge in the problem area can be 
written in the form of if-then rules and for which this problem area is not large. If 
there are too many rules, the system can become difficult to maintain and can 
suffer a performance hit. 

To create a rule-based system for a given problem, you must have (or create) 
the following: 

1. A set of facts to represent the initial working memory. This should be 
anything relevant to the beginning state of the system.  
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2. A set of rules. This should encompass any and all actions that should be 
taken within the scope of a problem, but nothing irrelevant. The number of 
rules in the system can affect its performance, so you don’t want any that 
aren’t needed.  

3. A condition that determines that a solution has been found or that none 
exists. This is necessary to terminate some rule-based systems that find 
themselves in infinite loops otherwise.  

Theory of Rule-Based Systems 

The rule-based system itself uses a simple technique: It starts with a rule-base, 
which contains all of the appropriate knowledge encoded into If-Then rules, and a 
working memory, which may or may not initially contain any data, assertions or 
initially known information. The system examines all the rule conditions (IF) and 
determines a subset, the conflict set, of the rules whose conditions are satisfied 
based on the working memory. Of this conflict set, one of those rules is triggered 
(fired). Which one is chosen is based on a conflict resolution strategy. When the 
rule is fired, any actions specified in its THEN clause are carried out. These 
actions can modify the working memory, the rule-base itself, or do just about 
anything else the system programmer decides to include. This loop of firing rules 
and performing actions continues until one of two conditions are met: there are 
no more rules whose conditions are satisfied or a rule is fired whose action 
specifies the program should terminate. 

 

Which rule is chosen to fire is a function of the conflict resolution strategy. Which 
strategy is chosen can be determined by the problem or it may be a matter of 
preference. In any case, it is vital as it controls which of the applicable rules are 
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fired and thus how the entire system behaves. There are several different 
strategies, but here are a few of the most common: 

• First Applicable: If the rules are in a specified order, firing the first 
applicable one allows control over the order in which rules fire. This is the 
simplest strategy and has a potential for a large problem: that of an infinite 
loop on the same rule. If the working memory remains the same, as does 
the rule-base, then the conditions of the first rule have not changed and it 
will fire again and again. To solve this, it is a common practice to suspend 
a fired rule and prevent it from re-firing until the data in working memory, 
that satisfied the rule’s conditions, has changed.  

• Random: Though it doesn’t provide the predictability or control of the first-
applicable strategy, it does have its advantages. For one thing, its 
unpredictability is an advantage in some circumstances (such as games 
for example). A random strategy simply chooses a single random rule to 
fire from the conflict set. Another possibility for a random strategy is a 
fuzzy rule-based system in which each of the rules has a probability such 
that some rules are more likely to fire than others.  

• Most Specific: This strategy is based on the number of conditions of the 
rules. From the conflict set, the rule with the most conditions is chosen. 
This is based on the assumption that if it has the most conditions then it 
has the most relevance to the existing data.  

• Least Recently Used: Each of the rules is accompanied by a time or step 
stamp, which marks the last time it was used. This maximizes the number 
of individual rules that are fired at least once. If all rules are needed for the 
solution of a given problem, this is a perfect strategy.  

• "Best" rule: For this to work, each rule is given a ‘weight,’ which specifies 
how much it should be considered over the alternatives. The rule with the 
most preferable outcomes is chosen based on this weight. 

There are two broad kinds of rule system: forward chaining systems, and 
backward chaining systems. In a forward chaining system you start with the 
initial facts, and keep using the rules to draw new conclusions (or take certain 
actions) given those facts. In a backward chaining system you start with some 
hypothesis (or goal) you are trying to prove, and keep looking for rules that 
would allow you to conclude that hypothesis, perhaps setting new sub goals to 
prove as you go. Forward chaining systems are primarily data-driven, while 
backward chaining systems are goal-driven. 

Procedural Versus Declarative Knowledge 

Preliminaries of Rule-based systems may be viewed as use of logical assertions 
within the knowledge representation. 

A declarative representation is one in which knowledge is specified, but the use 
to which that knowledge is to be put is not given. A declarative representation, 
we must augment it with a program that specifies what is to be done to the 
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knowledge and how. For example, a set of logical assertions can be combined 
with a resolution theorem prover to give a complete program for solving 
problems. There is a different way, though, in which logical assertions can be 
viewed, namely as a program, rather than as data to a program. In this view, the 
implication statements define the legitimate reasoning paths and the atomic 
assertions provide the starting points (or, if we reason backward, the ending 
points) of those paths.  

A procedural representation is one in which the control information that is 
necessary to use the knowledge is considered to be embedded in the knowledge 
itself. To use a procedural representation, we need to augment it with an 
interpreter that follows the instructions given in the knowledge. 

Screening logical assertions as code is not a very essential idea, given that all 
programs are really data to other programs that interpret (or compile) and 
execute them. The real difference between the declarative and the procedural 
views of knowledge lies in where control information resides. For example, 
consider the knowledge base: 

man (Marcus)  

man (Caesar) 

person(Cleopatra)  

∀x : man (x)  person(x) 

Now consider trying to extract from this knowledge base the answer to the 
question  

 ∃y : person(y) 

We want to bind y to a particular value for which person is true. Our knowledge 
base justifies any of the following answers:  

y = Marcus 

y = Caesar 

y = Cleopatra  

For the reason that there is more than one value that satisfies the predicate, but 
only one value is needed, the answer to the question will depend on the order in 
which the assertions are examined during the search for a response. 

 Of course, nondeterministic programs are possible. So, we could view these 
assertions as a nondeterministic program whose output is simply not defined. If 
we do this, then we have a "procedural" representation that actually contains no 
more information than does the "declarative" form. But most systems that view 
knowledge as procedural do not do this. The reason for this is that, at least if the 
procedure is to execute on any sequential or on most existing parallel machines, 
some decision must be made about the order in which the assertions will be 
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examined. There is no hardware support for randomness. So if the interpreter 
must have a way of-deciding, there is no real reason not to specify it as part of 
the definition of the language and thus to define the meaning of any particular 
program in the language. For example, we might specify that assertions will be 
examined in the order in which they appear in the program and that search will 
proceed depth-first, by which we mean that if a new subgoal is established then it 
will be pursued immediately and other paths will only be examined if the new one 
fails. If we do that, then the assertions we gave above describe a program that 
will answer our question with  

 y = Cleopatra 

To see clearly the difference between declarative and procedural 
representations, consider the following assertions: 

man(Marcus) 

 man(Caesar) 

 ∀x : man(x)  person(x) 

   person(Cleopatra) 

 Viewed declaratively, this is the same knowledge base that we had before. All 
the same answers are supported by the system and no one of them is explicitly 
selected. But viewed procedurally, and using the control model we used to get 
Cleopatra as our answer before, this is a different knowledge base since now the 
answer to our question is Marcus. This happens because the first statement that 
can achieve the person goal is the inference rule  

∀x: man(x)  person(x).  

This rule sets up a subgoal to find a man. Again the statements are examined 
from the beginning, and now Marcus is found to satisfy the subgoal and thus also 
the goal. So Marcus is reported as the answer.  

It is important to keep in mind that although we have said that a procedural 
representation encodes control information in the knowledge base, it does so 
only to the extent that the interpreter for the knowledge base recognizes that 
control information. So we could have gotten a different answer to the person 
question by leaving our original knowledge base intact and changing the 
interpreter so that it examines statements from last to first (but still pursuing 
depth-first search). Following this control regime, we report Caesar as our 
answer.  

There has been a great deal of disagreement in AI over whether declarative or 
procedural knowledge representation frameworks are better. There is no clear-
cut answer to the question. As you can see from this discussion, the distinction 
between the two forms is often very fuzzy. Rather than try to answer the question 
of which approach is better, what we do in the rest of this chapter is to describe 
ways in which rule formalisms and interpreters can be combined to solve 
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problems. We begin with a mechanism called logic programming, and then we 
consider more flexible structures for rule-based systems. 

4.2 Forwards versus Backwards Reasoning 

Whether you use forward or backwards reasoning to solve a problem depends 
on the properties of your rule set and initial facts. Sometimes, if you have some 
particular goal (to test some hypothesis), then backward chaining will be much 
more efficient, as you avoid drawing conclusions from irrelevant facts. However, 
sometimes backward chaining can be very wasteful - there may be many 
possible ways of trying to prove something, and you may have to try almost all of 
them before you find one that works. Forward chaining may be better if you have 
lots of things you want to prove (or if you just want to find out in general what 
new facts are true); when you have a small set of initial facts; and when there 
tend to be lots of different rules which allow you to draw the same conclusion. 
Backward chaining may be better if you are trying to prove a single fact, given a 
large set of initial facts, and where, if you used forward chaining, lots of rules 
would be eligible to fire in any cycle. The guidelines forward & backward 
reasoning are as follows: 
 

 Move from the smaller set of states to the larger set of states. 
 Proceed in the direction with the lower branching factor. 
 Proceed in the direction that corresponds more closely with the way the 

user will think. 
 Proceed in the direction that corresponds more closely with the way the 

problem-solving episodes will be triggered. 
 Forward rules: to encode knowledge about how to respond to certain 

input. 
 Backward rules: to encode knowledge about how to achieve particular 

goals. 

Problems in AI can be handled in two of the available ways: 

• Forward, from the start states 

• Backward, from the goal states, which is used in PROLOG as well. 

Taking into account the problem of solving a particular instance of the 8-puzzle. 
The rules to be used for solving the puzzle can be written as shown in Figure 4.1.   

Reason forward from the initial states. Begin building a tree of move sequences 
that might be solutions by starting with the initial configuration(s) at the root of the 
tree. Generate the next  
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Figure 4.1: A Sample of the Rules for solving the 8-Puzzle 

level of the tree by finding all the rules whose left sides match the root node and 
using their right sides to create the new configurations. Generate the next level 
by taking each node generated at the previous level and applying to it all of the 
rules whose left sides match it. Continue until a configuration that matches the 
goal state is generated. 

Reason backward from the goal states. Begin building a tree of move sequences 
that might be solutions by starting with the goal configuration(s) at the root of the 
tree. Generate the next level of the tree by finding all the rules whose right sides 
match the root node. These are all the rules that, if only we could apply them, 
would generate the state we want. Use the left sides of the rules to generate the 
nodes at this second level of the tree. Generate the next level of the tree by 
taking each node at the previous level and finding all the rules whose right sides 
match it. Then use the corresponding left sides to generate the new nodes. 
Continue until a node that matches the initial state is generated. This method of 
reasoning backward from the desired final state is often called goal-directed 
reasoning.  

To reason forward, the left sides are matched against the current state and the 
right sides (the results) are used to generate new nodes until the goal is reached. 
To reason backward, the right sides are matched against the current node and 
the left sides are used to generate new nodes representing new goal states to be 
achieved. This continues until one of these goal states is matched by an initial 
state.  

In the case of the 8-puzzle, it does not make much difference whether we reason 
, forward or backward; about the same number of paths will be explored in either 
case. But this is not always true. Depending on the topology of the problem 
space, it may be significantly more efficient to search in one direction rather than 
the other. Four factors influence the question of whether it is better to reason 
forward or backward:  
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• Are there more possible start states or goal states? We would like to move 
from the smaller set of states to the larger (and thus easier to find) set of 
states.  

• In which direction is the branching factor (i.e., the average number of nodes 
that can be reached directly from a single node)? We would like to proceed in 
the direction with the lower branching factor.  

• Will the program be asked to justify its reasoning process to a user? If so, it is 
important to proceed in the direction that corresponds more closely with the 
way the user will think.  

• What kind of event is going to trigger a problem-solving episode? If it is the 
arrival of a new fact, forward reasoning makes sense. If it is a query to which 
a response is desired, backward reasoning is more natural. 

We may as well consider a few practical examples that make these issues 
clearer. Have you ever noticed that it seems easier to drive from an unfamiliar 
place home than from home to an unfamiliar place. The branching factor is 
roughly the same in both directions. But for the purpose of finding our way 
around, there are many more locations that count as being home than there are 
locations that count as the unfamiliar target place. Any place from which we know 
how to get home can be considered as equivalent to home. If we can get to any 
such place, we can get home easily. But in order to find a route from where we 
are to an unfamiliar place, we pretty much have to be already at the unfamiliar 
place. So in going toward the unfamiliar place, we are aiming at a much smaller 
target than in going home. This suggests that if our starting position is home and 
our goal position is the unfamiliar place, we should plan our route by reasoning 
backward from the unfamiliar place.  

On the other hand, consider the problem of symbolic integration. The problem 
space is the set of formulas, some of which contain integral expressions. The 
start state is a particular formula containing some integral expression. The 
desired goal state is a formula that is equivalent to the initial one and that does 
not contain any integral expressions. So we begin with a single easily identified 
start state and a huge number of possible goal states. Thus to solve this 
problem, it is better to reason forward using the rules for integration to try to 
generate an integral-free expression than to start with arbitrary integral-free 
expressions, use the rules for differentiation, and try to generate the particular 
integral we are trying to solve. Again we want to head toward the largest target; 
this time that means chaining forward. These two examples have illustrated the 
importance of the relative number of start states to goal states in determining the 
optimal direction in which to search when the branching factor is approximately 
the same in both directions. When the branching factor is not the same, however, 
it must also be taken into account.  

Consider again the problem of proving theorems in some particular domain of 
mathematics. Our goal state is the particular theorem to be proved. Our initial 
states are normally a small set of axioms. Neither of these sets is significantly 
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bigger than the other. But consider the branching factor in each of the two 
directions, from a small set of axioms we can derive a very large number of 
theorems. On the other hand, this large number of theorems must go back to the 
small set of axioms. So the branching factor is significantly greater going forward 
from the axioms to the theorems than it is going backward from theorems to 
axioms. This suggests that it would be much better to reason backward when 
trying to prove theorems. Mathematicians have long realized this, as have the 
designers of theorem-proving programs.   

The third factor that determines the direction in which search should proceed is 
the need to generate coherent justifications of the reasoning process as it 
proceeds. This is often crucial for the acceptance of programs for the 
performance of very important tasks. For example, doctors are unwilling to 
accept the advice of a diagnostic program that cannot explain its reasoning to the 
doctors' satisfaction. This issue was of concern to the designers of MYCIN, a 
program that diagnoses infectious diseases. It reasons backward from its goal of 
determining the cause of a patient's illness. To do that, it uses rules that tell it 
such things as "If the organism has the following set of characteristics as 
determined by the lab results, then it is likely that it is organism x. By reasoning 
backward using such rules, the program can answer questions like "Why should I 
perform that test you just asked for?" with such answers as "Because it would 
help to determine whether organism x is present." By describing the search 
process as the application of a set of production rules, it is easy to describe the 
specific search algorithms without reference to the direction of the search.  

We can also search both forward from the start state and backward from the goal 
simultaneously until two paths meet somewhere in between. This strategy is 
called bidirectional search. It seems appealing if the number of nodes at each 
step grows exponentially with the number of steps that have been taken. 
Empirical results suggest that for blind search, this divide-and-conquer strategy is 
indeed effective. Unfortunately, other results, de Champeau and Sint suggest 
that for informed, heuristic search it is much less likely to be so. Figure 4.2 shows 
why bidirectional search may be ineffective. The two searches may pass each 
other, resulting in more work than it would have taken for one of them, on Its 
own, to have finished.  

However, if individual forward and backward steps are performed as specified by 
a program that has been carefully constructed to exploit each in exactly those 
situations where it can be the most profitable, the results can be more 
encouraging. In fact, many successful AI applications have been written using a 
combination of forward and backward reasoning, and most AI programming 
environments provide explicit support for such hybrid reasoning.  

Although in principle the same set of rules can be used for both forward and 
backward reasoning, in practice it has proved useful to define two classes of 
rules, each of which encodes a particular kind of knowledge.  

• Forward rules, which encode knowledge about how to respond to certain 
input configurations. 
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• Backward rules, which encode knowledge about how to achieve particular 
goals.  

• By separating rules into these two classes, we essentially add to each rule an 
additional piece of information, namely how it should be used in problem 
solving. 

 

  

Figure 4.2: A Bad Use of Heuristic Bi-directional Search 

4.3 Forward Chaining System 

In a forward chaining system the facts in the system are represented in a working 
memory, which is continually updated. Rules in the system represent possible 
actions to take when specified conditions hold on items in the working memory - 
they are sometimes called condition-action rules. The conditions are usually 
patterns that must match items in the working memory, while the actions usually 
involve adding or deleting items from the working memory. The interpreter 
controls the application of the rules, given the working memory, thus controlling 
the system's activity. It is based on a cycle of activity sometimes known as a 
recognise-act cycle. The system first checks to find all the rules whose conditions 
hold, given the current state of working memory. It then selects one and performs 
the actions in the action part of the rule. (The selection of a rule to fire is based 
on fixed strategies, known as conflict resolution strategies.) The actions will result 
in a new working memory, and the cycle begins again. This cycle will be 
repeated until either no rules fire, or some specified goal state is satisfied. 
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4.4 Backward Chaining System 

If you do know what the conclusion might be, or have some specific hypothesis 
to test, forward chaining systems may be inefficient. You could keep on forward 
chaining until no more rules apply or you have added your hypothesis to the 
working memory. But in the process the system is likely to do a lot of irrelevant 
work, adding uninteresting conclusions to working memory. To avoid this we can 
use backward chaining systems. 

Given a goal state to try and prove the system will first check to see if the goal 
matches the initial facts given. If it does, then that goal succeeds. If it doesn't the 
system will look for rules whose conclusions (previously referred to as actions) 
match the goal. One such rule will be chosen, and the system will then try to 
prove any facts in the preconditions of the rule using the same procedure, setting 
these as new goals to prove. Note that a backward chaining system does not 
need to update a working memory. Instead it needs to keep track of what goals it 
needs to prove to prove its main hypothesis. 

4.5 Conflict Resolution 

The result of the matching process is a list of rules whose antecedents have 
matched the current state description along with whatever variable bindings were 
generated by the matching process. It is the job of the search method to decide 
on the order in which rules will be applied. But sometimes it is useful to 
incorporate some of that decision making into the matching process. This phase 
of the matching process is then called conflict resolution. 

There are three basic approaches to the problem of conflict resolution in a 
production system: 

 Assign a preference based on the rule that matched. 

 Assign a preference based on the objects that matched. 
 Assign a preference based on the action that the matched rule would 

perform. 

4.6 Use of No Backtrack 

The real world is unpredictable, dynamic and uncertain. A robot cannot hope 
maintain a correct and complete description of the world. This means that robot 
does not consider the trade-off between devising and executing plans. This 
trade-off has several aspects. For one thing, robot may not possess enough 
information about the world for it to do any useful planning. In this case, it mostly 
first engages in information gathering activity. Furthermore, once it begins 
executing a plan, the robot most continually monitors the results of its actions. If 
the result is unexpected, then re-planning may be necessary. 
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Since robots operate in the real world, so searching and backtracking is a costly 
affair. Consider an example of an AI-first search for moving furniture into a 
room, operating in a simulated world with full information. Preconditions of 
operators can be checked quickly, and if an operator fails to apply, another can 
be tried checking preconditions in the real world, however, can be time 
consuming if the robot does not have full information. These problems can be 
solved by the adopting the approach of non back 

4.7 Summary 

In this lesson we have seen how to represent knowledge declaratively in rule-
based systems and how to reason with that knowledge. A declarative 
representation is one in which knowledge is specified, but the use to which that 
knowledge is to be put is not given where as a  procedural representation is one 
in which the control information that is necessary to use the knowledge is 
considered to be embedded in the knowledge itself. 

In PROLOG and many theorem-proving systems, rules are indexed by the 
predicates they contain, so all the rules that could be applicable to proving a 
particular fact can be accessed fairly quickly. The method of reasoning backward 
from the desired final state is called goal-directed reasoning. 

Backward-chaining systems, of which PROLOG is an example, are good for goal 
directed problem solving. Backward-chaining systems usually use depth-first 
backtracking to select individual rules, but forward-chaining systems generally 
employ sophisticated conflict resolution strategies to choose among the 
applicable rules. 

4.8 Key Words 

Forward Reasoning, Conflict Resolution, Backward Reasoning, Forward 
Chaining System, Backward Chaining System, & Use of No Backtrack.  

4.9 Self Assessments Questions 

Answer the following Questions:  

Q1. Differentiate between Rule-based architecture and non-production system 
architecture. 

Q2. What do you understand by forward and backward reasoning? 

Q3. Write short note on the following: 

a. Conflict Resolution 

b. Rule Based System 

c. Set of Support Resolution Strategy 

d. Use of No Backtrack 
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5.0 Objective 
In this lesson various structured knowledge techniques via semantic nets or networks, 
frames, scripts & conceptual dependency are discussed. It shows how knowledge is 
actually pictureized and how effectively it resembles the representation of knowledge in 
human brain. After completion of this module, students come to know how to represent 
or handle problem(s) in AI. 
5.1 Significance of Knowledge Representation 
A representation is a way of describing certain fragments or information so that any 
reasoning system can easily adopt it for inferencing purpose. Knowledge representation is 
a study of ways of how knowledge is actually pictureized and how effectively it 
resembles the representation of knowledge in human brain. 
 
A Knowledge representation system should provide ways of representing complex 
knowledge and should possess the following characteristics: 
 

 The representation scheme should have a set of well-defined syntax and 
semantics. 

 The Knowledge representation scheme should have good expressive 
capacity. A good expressive capability will catalyze the inferencing 
mechanism in its reasoning process. 

 From the computer system point of view, the representation must be 
efficient. By this we mean that it should use only limited resources without 
compromising on the expressive power. 

 
 
Major differences between Database and Knowledge Base. 
 
Database Knowledge Base 
Collection of data representing facts. Has information at higher level of 

abstraction. 
Large volume of data and facts change Significantly smaller than database and 
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over time. changes are gradual. 
Operates on a single object. Operates on a class of objects rather 

than a single object. 
Clerical personnel perform updates. Domain experts perform updates. 
All information needed to be explicitly 
stated. 

Has the power of inferencing. 

Maintained for operational purposes. Used for data analysis and planning. 
Represented by relational or network or 
hierarchical model. 

Knowledge representation is by logic or 
rules or frames or semantic nets. 

Predominant way of interaction is by 
transaction programs and report 
generators. 

Has to have a consultation with the 
system and provide needed data to 
obtain the solution. 

 
 
In this chapter we discuss about some of the widely known representation 
schemes. They are 

1. Semantic Nets 
2. Frames 
3. Conceptual Dependency 
4. Scripts 

 
5.2 Semantics Nets (Associative Network) 

A semantic network or a semantic net is a structure for representing knowledge 
as a pattern of interconnected nodes and arcs. It is also defined as a graphical 
representation of knowledge. The objects under consideration serve as nodes 
and the relationships with another nodes give the arcs. 

In a semantic net, information is represented as a set of nodes connected to 
each other by a set of labeled ones, which represent relationships among the 
nodes. A fragment of a typical semantic net is shown in Figure 5.1. 

 
Figure 5.1: A Semantic Network 

This network contains example of both the is a and instance relations, as well as 
some other, more domain-specific relations like team and uniform-color. In this 
network we would use inheritance to derive the additional relation. 
has-part (Pee-Wee-Reese, Nose). 
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Partitioned Semantic Nets 

Suppose we want to represent simple quantified expressions in semantic nets. 
One was to do this is to partition the semantic net into a hierarchical set of 
spaces, each of which corresponds to the scope of one or more variables. To 
see how this works, consider first the simple net shown in Figure 5.2. This net 
corresponds to the statement. 

The dog bit the mail carrier. 

The nodes Dogs, Bite, and Mail-Carrier represent the classes of dogs, bitings, 
and mail carriers, respectively, while the nodes d, b, and m represent a particular 
dog, a particular biting, and a particular mail carrier. A single net with no 
partitioning can easily represent this fact. 

But now suppose that we want to represent the fact  

Every dog has bitten a mail carrier. 

 
Figure 5.2: Using Partitioned Semantic Nets 

( ) ( )y,xBite)y(CarrierMail:yxDog:x ∧−∃→∀  

It is necessary to encode the scope of the universally quantified variable x in 
order to represent this variable. This can be done using partitioning as shown in 
Figure 5.2 (b). The node stands for the assertion given above. Node g is an 
instance of the special class GS of general statements about the world (i.e., 
those with universal quantifiers). Every element to GS has at least two attributes: 
a form, which states the relation that is being assert one or more ∀ connections, 
one for each of the universally quantified variable. In this example, there is only 
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one such variable d, which can stand for any element the class Dogs. The other 
two variables in the form, b and m, are understood to existentially qualified. In 
other words, for every dog d, there exists a biting event and a mail carrier m, 
such that d is the assailant of b and m is the victim. 

To see how partitioning makes variable quantification explicit, consider next 
similar sentence: 

Every dog in town has bitten the constable 

The representation of this sentence is shown in Figure 5.2 (c). In this net, the 
node representing the victim lies outside the form of the general statement. Thus 
it is not viewed as an existentially quantified variable whose value may depend 
on the value of d. Instead it is interpreted as standing for a specific entity (in this 
case, a particular table), just as do other nodes in a standard, no partitioned net. 
Figure 5.2(d) shows how yet another similar sentences 

Every dog has bitten every mail carrier.  

should be represented. In this case, g has two ∀ links, one pointing to d, which 
represents dog, and one pointing to m, representing ay mail carrier. 

The spaces of a partitioned semantic net are related to each other by an 
inclusion Search. For example, in Figure 5.2(d), space SI is included in space 
SA. Whenever search process operates in a partitioned semantic net, it can 
explore nodes and arcs in space from which it starts and in other spaces that 
contain the starting point, but it does not go downward, except in special 
circumstances, such as when a form arc is being traversed. So, returning to 
figure 5.2(d), from node d it can be determined that d must be a dog. But if we 
were to start at the node Dogs and search for all known instances dogs by 
traversing is a likes, we would not find d since it and the link to it are in space SI, 
which is at a lower level than space SA, which contains Dogs. This is constant, 
since d does not stand for a particular dog; it is merely a variable that can be 
initiated with a value that represents a dog. 
 
5.3 Frames 
 
Marvin Minsky in the book on computer vision proposed frames as a means of 
representing common-sense knowledge. In that Minsky proposed that knowledge 
is organized into small “packets” called frames. The contents of the frame are 
certain slots, which have values. All frames of a given situation constitute the 
system. A frame can be defined as a data structure that has slots for various 
objects and a collection of frames consists of exceptions for a given situation. A 
frame structure provides facilities for describing objects, facts about situations, 
procedures on what to do when a situation is encountered. Because of this 
facilities a frames are used to represent the two types of knowledge, viz., 
declarative/factual and procedural.  
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Default Frames 

Set theory provides a good basis for understanding frame systems. Although not 
all frame systems are defined this way, we do so here. In this view, each frame 
represents either a class (a set) or an instance (an element of a class). To see 
how this works, consider the frame system shown in Figure 6.5. In this example, 
the frames Person, Adult-Male, ML-Baseball-Player (corresponding to major 
league baseball players) Pitter, and ML-Baseball-Team (for major league 
baseball team) are all classes. The frame Pee-Wee-Reese and Brooklyn-
Dodgers are instances. 

The is a relation that we have been using without a precise definition is in fact the 
subset relation. The isa of adult males is a subset of the set of people. The set of 
major league baseball players is a subset of the set of adult males, and so forth. 
Our instance relation corresponds to the relation element of Pee Wee Reese that 
is an element of the set of fielders. Thus he is also an element of all of the 
superset of fielders, including major league baseball players and people. The 
transitivity of isa that we have taken for granted in our description of property 
inheritance follows directly from the transitivity of the subset relation. 

Both the isa and instance relations have inverse attributes, where we call 
subclasses and all-instances. We do not bother to write them explicitly in our 
examples unless we need to refer to them. We assume that the frame system 
maintains them automatically. Either explicitly or by computing them if necessary. 

Since a class represents a set, there are two kinds of attributes that can be 
associated with it. There are attributes about the set itself, and there are 
attributes that are to be inherited by each element of the set. We indicate the 
difference between these two by prefixing the latter with an asterisk (*). For 
example, consider the class ML-Baseball-Player. We have shown only two 
properties of it as a set: It is a subset of the set of adult males. And it has 
cardinality 624 (i.e., there are 624 major league baseball players). We have listed 
five properties that all major league baseball players have (height, bats, batting-
average, team, and uniform-colour), and we have specified default values for the 
first three of them. By providing both kinds of slots, we allow a class both to 
define a set of objects and to describe a prototypical object of the set.  

Sometimes, the distinction between a set and an individual instance may not be 
seen clearly. For example, the team Brookln-Dodgers, which we have described 
as a instance of the class of major league baseball teams, could be thought of as 
a set of players in fact, notice that the value of the slot players is a set. Suppose, 
instead, what we want to represent the Dodgers as a class instead of an 
instance. Then its instances would be the individual players. It cannot stay where 
it is in the isa hierarchy; it cannot be a subclass of ML-Baseball-Team, because if 
it were, then its elements, namely the players would also, by the transitivity of 
subclass, be elements of ML-Baseball-team, which is not what we want so say. 
We have to put it somewhere else in the isa hierarchy. For example, we could 
make it a subclass of major league baseball players. Then its elements, the 
players, are also elements of ML-Baseball-Players, Adult-Male, and Person. That 
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is acceptable. But if we do that, we lose the ability to inherit properties of the 
Dodges from general information about baseball teams. We can still inherit 
attributes for the elements of the team, but we cannot inherit properties of the 
team as a whole, i.e., of the set of players. For example, we might like to know 
what the default size of the team is, that it has a manager, and so on. The 
easiest way to allow for this is to go back to the idea of the Dodgers as an 
instance of ML-Baseball-Team, with the set of players given as a slot value.   

 

Person 
 isa:  Mammal 
 cardinality:  6,000,000,000 
 *handed:  Right 
 
Adult-Male 
 isa:  Person 
 cardinality:  2,000,000,000 
 *height;  5-10 
 
ML-Baseball-Player 
 isa:  Adult-Male 
 cardinality:  624 
 *height:  6-1 
 *bats:  equal to handed 
 *batting-average: . 252 
 *team: 
 *uniform-color: 
Fielder 
 Isa:  ML-Baseball-Player 
 cardinality:  36 
 *batting-average  .262 
 
Johan 
 insance:  Fielder 
 height:  5-10 
 bats:  Right 
 batting-average: . 309 
 team:  Brooklyn-Dodgers 
 uniform-color:  Blue 
ML-Baseball-Team 
 isa:  Team 
 cardinality:  26 
 *team-size:  24 
 *manager:  24 
Brooklyn-Dodgers 
 instance:  ML-Baseball-Team 
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 team-size:  24 
 manager:  Leo-Durocher 
 players:  (Johan,Pee-Wee-
Reese,…) 

Figure 5.3: A Simplified Frame System 

But what we have encountered here is an example of a more general problem. A 
class is a set, and we want to be able to talk about properties that its elements 
possess. We want to use inheritance to infer those properties from general 
knowledge about the set. But a class is also an entity in itself. It may possess 
properties that belong not to the individual instances but rather to the class as a 
whole. In the case of Brooklyn-Dodgers, such properties included team size and 
the existence of a manager. We may even want to inherit some of these 
properties from a more general kind of set. For example, the Dodgers can inherit 
a default team size from the set of all major league baseball teams. To support 
this, we need to view a class as two things simultaneously: a subset (isa) of a 
larger class that also contains its elements and an instance (instance) of a class 
of sets, from which it inherits its set-level properties. 

 

To make this distinction clear, it is useful to distinguish between regular classes, 
whose elements are individual entities, and meta classes, which are special 
classes whose elements are themselves classes. A class is now an element of 
(instance) some class (or classes) as well as a subclass (isa) of one or more 
classes. A class inherits properties from the class of which it is an instance, just 
as any instance does. In addition, a class passes inheritable properties down 
from is super classes to its instances. 

Let’s consider an example. Figure 5.4 shows how we would represent teams as 
classes using this distinction. Figure 5.5 shows a graphic view of the same 
classes. The most basic met class in the class represents the set of all classes. 
All classes are instance of it, either directly or through one of its subclasses. In 
the example, Team in a subclass (subset) of Class and ML-Baseball-Team is a 
subclass of Team. The class introduces the attribute cardinality, which is to be 
inherited by all instances of Class (including itself). This makes sense that all the 
instances of Class are sets and all sets have cardinality. 

Team represents a subset of the set of all sets, namely those elements are sets 
of players on a team. It inherits the property of having cardinality from Class. 
Team introduces the attribute team-size, which all its elements possess. Notice 
that team-size is like cardinality in that it measures the size of a set. But it applies 
to something different cardinality applies to sets of sets and is inherited by all 
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elements of Class. The slot team-size applies to the element of those sets that 
happen to be teams. Those elements are of individuals. 

ML-Baseball-Team is also an instance of Class, since it is a set. It inherits the 
property of having cardinality from the set of which it is an instance, namely 
Class. But it is a subset of Team. All of its instances will have the property of 
having a team-size since they are also instances of the super class Team. We 
have added at this level the additional fact that the default team size is 24; so all 
instance of ML-Baseball-Team will inherit that as well. In addition, we have 
added the inheritable slot manager. 

Brooklyn-Dodgers in an instance of a ML-Baseball-Team. It is not an instance of 
Class because its elements are individuals, not sets. Brooklyn-Dodgers is a 
subclass of ML-Baseball-Player since all of its elements are also elements of that 
set. Since it is an instance of a ML-Baseball-Team, it inherits the properties 
team-size and manager, as well as their default values. It specifies a new 
attribute uniform-colour, which is to be inherited by all of its instances (who will 
be individual players). 

 

Class 
 instance :  Class 
 isa : Class  
 *cardinanality :  
 
Team  
 istance : Class 
 isa : Class 
 cardinality : { the number of teams 
that exist} 
 * team size : { each team  has  a size} 
 
ML – Baseball – Team 
 instance : Class 
 isa :  Team 
 cardinality :  26 { the number of 

baseball teams that exist} 
 * team-size :  24 { default 24 players on 
a team} 
 * manager :  
 
Brooklyn-Dodgers 
 instance : ML – Baseball – Team 
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 isa :  ML-Baseball – Player 
 team-size : 24 
 manager :  Leo – Durocher 
 * unifoirm-color Blue 
 
Pee-Wee – Reese 
 instance :  Broklyn – Dodgers 
 instance :  Fielder 
 uniform-color: Blue 
 batting –average :  309 

Figure 5.3 : Representing the Class of All Teams as a Metaclass 

 
Figure 5.4: Classes and Metaclasses 

Finally, Pee-Wee-Reese is an instance of Brooklyn-Dodgers. That makes him 
also, by transitivity up isa links, an instance of ML-Baseball-Player. But recall that 
in earlier example we also used the class Fielder, to which we attached the fact 
that fielders have above average batting averages. To allow that here, we simply 
make Pee Wee an instance of Fielder as well. He will thus inherit properties from 
both Brooklyn-Dodgers and from fielder, as well as from the classes above these. 
We need to guarantee that when multiple inheritances occurs, as it does here, 
that it works correctly. Specified in this case, we need to assure that batting – 
average gets inherited from Fielder and not from ML-Baseball-Player through 
Brooklyn-Dodgers.  

In all the frame system we illustrate, all classes are instances of the metaclass 
Class. As a result, they all have the attribute cardinality out of our description of 
our examples, though unless there is some particular reason to include them. 
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Every class is a set. But not every set should be described as a class. A class 
describes a set of entries that share significant properties. In particular, the 
default information associated with a class can be used as a basis for inferring 
values for the properties if it’s in individual elements. So there is an advantage to 
representing as a class these sets for which membership serves as a basis for 
nonmonotonic inheritance. Typically, these are sets in which membership is not 
highly ephemeral. Instead, membership is on some fundamental structural or 
functional properties. To see the difference, consider the following sets: 

• People 

• People who are major league baseball players 

• People who are on my plane to New York 
 
The first two sets can be advantageously represented as classes, with which a 
sub-statistical number of inheritable attributes can be associated. The last, 
though, is different. The only properties that all the elements of that set probably 
share are the definition of the set itself and some other properties that follow from 
the definition (e.g. they are being transported from one place to another). A 
simple set, with some associated assertions, is adequate to represent these 
facts: non-monotonic inheritance is not necessary. 
 
5.4 Scripts 
 
Frames represented a general knowledge representation structure, which can 
accommodate all kinds of knowledge. Scripts on the other hand, help exclusively in 
representing stereotype events that takes place in day-to-day activities. Some such events 
are: 

 Going to hotel, eating something, paying the bill and existing. 
 Going to threatre, getting a ticket, viewing the film/drama and leaving. 
 Going to bank for withdrawal, filling the withdrawal slip/cheque, presenting 

to the cashier, getting money and leaving the bank. 
 
A script is a knowledge representation structure that is extensively used for 
describing stereotype sequences of actions. It is the special case frame 
structure. These are intended for capturing situations in which behavior is very 
stylized. Similar to frames, scripts do have slots and with each slot, we associate 
information about the slot. Scripts tell people that what can happen in a situation, 
what events follow and what role every actor plays. It is possible to visualize the 
same and scripts present a way of representing them effectively what a 
reasoning mechanism exactly understands what happens at that situation. 
 
5.5 Slots Exceptions  

We have provided a way to describe sets of objects and individual objects, both 
in terms of attributes and values. Thus we have made extensive use of attributes, 
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which we have represented as slots attached to frames. But it turns out that there 
are several means why we would like to be able to represent attributes explicitly 
and describe their properties. Some of the properties we would like to be able to 
represent and use in meaning include: 

• The classes to which the attribute can be attached, i.e. for what classes 
does it make sense? For example, weight makes sense for physical 
objects but not for conceptual ones (except in some metaphorical sense). 

• A value that all instances of a class must have by the definition of the 
class. 

• A default value for the attribute.  

• Rules for inheriting values for the attribute. The usual rule is to inherit 
down isa and instance links.  But some attributes inherit in other ways. For 
example last-name inherits down the child of link. 

 
ML-Baseball-Player 
 is-covered by :  { Pitcher,Catcher, 
Fielder} 
  { American-Leaguer , 
National-Leagwer} 
Pitcher 
 isa : ML-Baseball –Player 
 mutually – disjoint with: { catcher, Fielder} 
 
Catcher 
 isa :  ML-Baseball – Player 
 mutually-disjoint –with : {Pitcher, Fielder} 
 
Fielder 
 isa :  ML-Baseball Player 
 mutually –disjoint-with : { Pitcher, Catcher} 
 
American – Leaguer 
 isa :  ML-Baseball –Player 
 mutually-disjoint-with  { National-Leaguer } 
 
National Leaguer 
 isa :  ML-Baseball-Player 
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 mutually-disjoint-with :  {american-Leaguer} 
 
Three-Finger-Brown 
 instance : Pitcher 
 instance :  National – Leaguer 

Figure 5.5 : Representing Relationships among Classes 

• Rules for computing a value separately from inheritance. One extreme 
form of such a rule is a procedure written in some procedural 
programming language such as LISP. 

• An inverse attribute. 

• Whether the slot is single – valued or multivalued. 

In order to be able to represent these attributes of attributes, we need to describe 
attributes (slots) as frames. These frames will be organized into an isa hierarchy, 
just as any other frames for attributes of slots. Before we can describe such a 
hierarchy in detail, we need to formalize our notion of a slot. 

A slot is a relation. It maps from elements of its domain (the classes for which it 
makes sense) to elements of its range (its possible values). A relation is a set of 
ordered pair. Thus it makes sense to say that one relation (R1) is a subset of 
another  (R2). In the case, R1 is a specification of R2, so in our terminology is a 
(R1, R2). Since a slot is yet the set of all slots, which we will call Slot, is a 
metaclass. Its instances are slots, which may have subslots. 

Figure 5.5 and 5.6 illustrate several examples of slots represented as frames of 
slot metaclass. Its instances are slots (each of which is a set of ordered pairs). 
Associated with the metaclass are attributes that each instance(i.e. each actual 
slot) will inherit. Each slot, since it is a relation, has a domain and a range. We 
represent the domain in the slot labelled domain. We break up the representation 
of the range into two parts:  contains logical expressions that further constrain the 
range to be TRUE. The advantage to breaking the description apart into these 
two pieces is that type checking a such cheaper than is arbitrary constraint 
checking, so it is useful to be able to do it separately and early during some 
reasoning processes. 

The other slots do what you would expect from their names. If there is a value for 
definition, it must be propagated to all instances of the slot. If there is a value for 
default, that value is inherited to all instance of the slot unless there is an 
overriding value. The attribute transfers lists other slots from which values for this 
slot can be derived through inheritance. The to-compute slot contains a 
procedure for deriving its value. Inverse, sometimes they are not useful enough 
in reasoning to be worth representing. And single valued is used to mark the 
special cases in which the slot is a function and can have only one value. 

Of course, there is a no advantage of representing these properties of slots if 
there is a reasoning mechanism that exploits them. In the rest of our discussion 
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we assume for the frame system interpreter knows how to reason with all of 
these slots of slots as part of its built-in reasoning capability. In particular, we 
assume that it is capable of forming the following reasoning actions. 

• Consistency checking to verify that when a slot value is added to a frame 

 - The slot makes sense for the frame. This relies on the domain attribute of 
the slot. 

 
 

Slot  
 isa :  Class 
 instance : Class 
 domain : 
 range : 
 range-constraint : 
 definition : 
 default : 
 trangulars-through : 
 to-compute : 
 inverse : 
 single-valued :  
   
manager 
 instance : Slot 
  domain :  ML-Baseball –

Team 
 range : Person 
 range-constraint : kx (baseball-
experience x, manager) 
 default :     
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 inverse : manager – of 
 single – valued :  TRUE 

Figure 6. 9 ; Representing Slots as Frames , I  

My – manager   
 instance :  Slot 
 domain : ML-Baseball 
Player 
 range : Person 
 range-constraint : kx(baseball-
experience x any manager) 
 to-compute : kx( x,team), 
manager 
 single-valued :  TRUE 
 
Colour 
 instance :  Slot 
 domain : Physical-Object 
 range : Colour-Set  
 transfer-through : top-level-part-of 
 visual-salience :  High 
 single-valued : FALSE 

 
Uniform-colour 
 instance : Slot 
 isa :  colour 
 domain :  team – Player 
 range :  Colour – Set 
 range-constraint : non-Pink 
 visual-sailence :  High 
 single-valued :  FALSE 

 
Bats 
 instance : Slot 
  domain :  ML-Baseball-

Player 
 range :  ( Left,Right, 
Switch) 
 to-compute :  kx x, handed 
 single-valued :  TRUE 

Figure 5.6 : Representing Slots as Frames II 

 - The value is a legal value for the slot. This relies on the range and 
range – constraint attributes. 

• Maintenance of consistency between the values for slots and their 
inverses whenever one is updated. 
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• Propagation of definition values along isa and instance links. 

• Inheritance of default values along isa and instance links.  

• Computation of a value of a slot as needed. This relies on the to-compute 
and transfers through attributes. 

• Checking that only a single value is asserted for single –valued slots. 
Replacing an old value by the new one when it is asserted usually does 
this. An alternative is to force explicit retraction of the old value and to 
signal a contradiction if a new value is asserted when another is already 
there. 

There is something slightly counterintuitive about this way of defining slots. We 
have defined properties range – constraint and default as parts of a slot. But we 
then think of them as being properties of a slot associated with a particular class. 
For example in Figure 5.7, we listed two defaults for the batting – average slot, 
one associated with major league baseball players and one associated with 
fielders. Figure 5.6 shows how this can be represented correctly by creating a 
specialization of batting average that can he associated with a specialization of 
ML-Baseball-Player to represent the more special information that is known 
about the specialized class. This seems cumbersome. It is natural, though given 
our definition of a slot as relation. There are really two relations here, one a 
specialization of the other. And below we will define inheritance so that it looks 
for values of either the slot it is given or any of that slot’s generations. 

Unfortunately, although this model of slots is simple and it is internally consisted 
it is not easy to see. So we introduce some notational shorthand that allows the 
four most important properties of a slot (domain range definition and default) to 
be defined implicitly by how the slot is used in the definitions of the classes in its 
domain. We describe the domain implicitly to be the class where the slot 
appears. We describe the range and any range constraints with the clause 
MUST BE, as the value of an inherited slot. Figure 5.8 shows an example of this 
notation. And we describe the definition and the default. If they are present by 
inserting them as the value of the slot when one appears. The two will be 
distinguished by perplexing a definitional value with an assts (“). We then let the 
underlying book keeping of the frame system create the frames to represent slots 
as they are needed. 

Now let’s look at examples of how these slots can be used. The slots bats and 
my manager illustrate the use of the to-compute attribute of a slot. The variable x 
will be bound to the frame to which the slot is attached. We are the notation to 
specify the value of a slot of a frame. Specially, x, y describes the value (s) of the 
y slot it frame x. So we know that to compute a frame a value for any manager, it 
is necessary find the frame’s value for team, then find the resulting team’s 
manager. We have simply composed two slots to form a new one. Computing the 
value of the bats slots is a even simpler. Just go get the value of the hand slot. 

Batting average 
 instance : Slot 
 domain :  ML-Baseball Player 
 range :  Number 
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 range-constraint :  kx( 0 < x range-
constraint < 1 ) 
 default :  252 
 single-valued :  TRUE 
 
Fielder batting average 
 instance :  Slot 
 isa :  batting-average 
 domain :  Fielder 
 range :  Number 
 range-constraint :  kx 9o < x,range – 
constraint < 1) 
 default :  262  
 single-valued :  TRUE 

 

Figure 5.7 Associating Defaults with Slots 

ML-Baseball-Player 

 Bats :   MUST BE (Left, Right, 
Switch) 

Figure 5.8.  A  Shorthand Notation For Slot – Range Specification 

The manager slots illustrate the use of a range constraint. It is stated in terms of 
a variable x, which is bound to the frame whose manager slot is being described. 
It requires that any manager be not only a person but someone with baseball 
experience relies on the domain-specific function baseball experience, which 
must be defined somewhere in the system. 

The slots colour and uniform–colour illustrate the arrangements of slots in is 
history. The relation colour is a fairly general one that holds between physical 
objects colour. The attribute uniform-colour is a restricted form of colour that 
applies only to team players and ones that are allowed for team uniform 
(anything but pink). Arranging slots in a hierarchy is useful for the same reason 
than arranging any thing else in a hierarchy is, it supports inheritance. In this 
example the general slot is known to have high visual salience. The more 
specific slot uniform colour then tests this property, so it too is known to have 
high visual salience. 

The slot colour also illustrates the use of the transfer-through slot, which defines 
a way of computing a slot’s value by retrieving it from the same slot of a related 
object as its example. We used transfers through to capture the fact that if you 
take an object and chop it up into several top level parts (in other words, parts 
that are not contained for each other) then they will all be the same colour. For 
example, the arm of a sofa is the colour as the sofa. Formally what transfers 
through means in this example is  

John 



 65

 Height :     72 

Bill 

 Height : 

Figure 5.9 Representing Slot-Values 

color(x,y) ∧ top-level–part-of( z,x)→ color(z,y) 
In addition to these domain independent slot attributes slots may have domain 
specific properties that support problem solving in a particular domain. Since the 
frame system interpreter does not treat these slots explicitly, they will be useful 
precisely to the extent that the domain problem solver exploits them. 
 
5.6 Summary 

In this lesson we have investigated different types of structural knowledge 
representation methods. We considered associative networks (semantic net), a 
representation based on a structure of linked nodes (concepts) and arcs 
(relations) connecting the nodes. With these networks we saw how related 
concepts could be structured into cohesive units and exhibited as graphical 
representation.  A frame is a collection of attributes (usually called slots) and 
associated values (and possibly constraints on values) that describe some entity 
in the world. In this lesion we also described a special frame-like structure called 
scripts. Scripts are used to represent stereotypical patterns for commonly 
occurring events.  Like a play scripts contains actors, roles, props, and scenes, 
which combine to represent a familiar situation. Scripts have been used in a 
number of programs, which read and “understood” language in the form of 
stories. 

5.7 Key Words 

Semantic Net Slots, Slots, Frame, Scripts & Exceptions & Defaults 

5.8 Self Assessments Questions 

Answer the following questions 

Q1. Explain & distinguish between the following: - 

a. Associative Network Structure 

b. Frame Structure 

Q2.  What are the main difference between scripts and frame structure? 

Q3. Write short note on the following:- 

a. Exception & Defaults 

b. Semantic Net 

c. Slots 
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6.0 Objective  
Learning is a continues process of knowledge refinement. This lesson discuss about 
various learning techniques, Probabilistic Reasoning, Use of Certainty Factors, Fuzzy 
Logic, Concept of Learning, Learning Automation, Genetic Algorithm, Learning by 
Induction and Neural Networks. Upon completion of this lesson students come to know 
how a machine acquire knowledge and better understanding of the terms like genetic 
algorithm and neural networks.  

6.1 Probabilistic Reasoning 

Here we will examine methods that use probabilistic representations for all 
knowledge and which reason by propagating the uncertainties from evidence and 
assertions to conclusions. As before, the uncertainties can arise from an inability 
to predict outcomes due to unreliable, vague, incomplete, or inconsistent 
knowledge. 

The probability of an uncertain event A is a measure of the degree of likelihood of 
occurrence of that event. The set of all possible events is called the sample 
space; S A probability measure is a function P(A) which maps event outcome 

,.....E,E 21 from S into real numbers and which satisfies the following axioms of 
probability: 

1. for any event .SA ⊆   

2. )S(P =1, a certain outcome   

3. For iE  ,Ej Φ=∩  for all ji ≠ (the iE are mutually exclusive), 
( ) ( ) ( ) ...EPEP...EEEP 3232i ++=∪∪∪  

From these three axioms and the rules of set theory, the basic law of probability 
can be derived. Of course, the axioms are not sufficient to compute the 
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probability of an outcome. That requires an understanding of the underlying 
distributions that must be established through one of the following approaches: 

1. Use of a theoretical argument that accurately characterizes the processes. 

2. Using one’s familiarity and understanding of the basic processes to assign 
subjective probabilities, or 

3. Collecting experimental data from which statistical estimates of the 
underlying distributions can be made. 

Since much of the knowledge we deal with is uncertain in nature, a number of 
our beliefs must be tenuous. Our conclusions are often based on available 
evidence and past experience, which is often far from complete. The conclusions 
are, therefore, no more than educated guesses. In a great many situations it is 
possible to obtain only partial knowledge concerning the possible outcome of 
some event. But, given that knowledge, one’s ability to predict the outcome is 
certainly better than with no knowledge at all. We manage quite well in drawing 
plausible conclusions from incomplete knowledge and past experiences. 

Probabilistic reasoning is sometimes used when outcomes are unpredictable. For 
example, when a physician examines a patient, the patient’s history, symptoms, 
and test results provide some, but not conclusive, evidence of possible ailments. 
This knowledge, together with the physician’s experience with previous patients, 
improves the likelihood of predicting the unknown (disease) event, but there is 
still much uncertainty in most diagnoses. Likewise, weather forecasters “guess” 
at tomorrow’s weather based on available evidence such as temperature, 
humidity, barometric pressure, and cloud coverage observations. The physical 
relationships that overrun these phenomena are not fully understood; so 
predictability is far from certain. Even a business manager must make decisions 
based on uncertain predictions when the market for a new product is considered. 
Many interacting factors influence the market, including the target consumer’s 
lifestyle, population growth, potential consumer income, the general economic 
climate, and many other dependent factors. 

In all of the above cases, the level of confidence placed in the hypothesized 
conclusions is dependent on the availability of reliable knowledge and the 
experience of the human prognosticator. Our objective in this chapter is to 
describe some approaches taken in AI systems to deal with reasoning under 
similar types of uncertain conditions. 

6.2 Use of Certainty Factors 

MYCIN uses measures of both belief and disbelief to represent degrees of 
confirmation and disconfirmation respectively in a given hypothesis. The basic 
measure of belief, denoted by ( ),E,HMB is actually a measure of increased belief 
in hypothesis H due to the evidence E. This is roughly equivalent to the 
estimated increase in probability of ( )E/HP over ( )HP given by an expert as a 
result of the knowledge gained by E. A value of 0 corresponds to no increase in 
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belief and 1 corresponds to maximum increase or absolute belief. Likewise, 
( )E,HMD is a measure of the increased disbelief in hypothesis H due to evidence 

E. MD ranges from 0 to +1 with +1 representing maximum increase in disbelief, 
(total disbelief) and 0 representing no increase. In both measures, the evidence 
E may be absent or may be replaced with another hypothesis, ( ).HHMB 2,1  This 
represents the increased belief in 1H given 2H is true. 

In an attempt to formalize the uncertainty measure in MYCIN, definitions of MB 
and MD have been given in terms of prior and conditional probabilities. It should 
be remembered, however, the actual values are often subjective probability 
estimates provided by a physician. We have for the definitions. 

 1 If ( ) 1HP =  

 ( ) ( ) ( ) ( )[
( )HP1

HPHP,EHPmax
�������������������������������������

����E,HMB
−

−=  otherwise          

(6.11) 

 1  If ( ) 1HP =  

 ( ) ( ) ( )[ ] ( )
( )HP0

HPHP,E|HPmin
�����E,HMB

=
−

= otherwise          

(6.12) 

Note that when ( ) ,1HP0 << and E and H are independent (So ( )EHP = ( ),HP then 
MB = MD = 0. This would be the case if E provided no useful information. 

The two measures MB and MD are combined into a single measure called the 
certainty factor (CF), defined by 

( ) ( ) ( )E,HMDE,HMBE,HCF −=  (6.13) 

Note that the value of CF ranges from –1 (certain disbelief) to +1 (certain belief). 
Furthermore, a value of CF = 0 will result if E neither confirms nor unconfirms H 
(E and H are independent). 

 

6.3 Fuzzy Logic 

Fuzzy logic has rapidly become one of the most successful of today's 
technologies for developing sophisticated control systems. The reason for 
which is very simple. Fuzzy logic addresses such applications perfectly as it 
resembles human decision making with an ability to generate precise solutions 
from certain or approximate information. It fills an important gap in engineering 
design methods left vacant by purely mathematical approaches (e.g. linear 
control design), and purely logic-based approaches (e.g. expert systems) in 
system design.  
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While other approaches require accurate equations to model real-world 
behaviors, fuzzy design can accommodate the ambiguities of real-world human 
language and logic. It provides both an intuitive method for describing systems in 
human terms and automates the conversion of those system specifications into 
effective models.  

What does it offer?  
The first applications of fuzzy theory were primaly industrial, such as process 
control for cement kilns. However, as the technology was further embraced, 
fuzzy logic was used in more useful applications. In 1987, the first fuzzy logic-
controlled subway was opened in Sendai in northern Japan. Here, fuzzy-logic 
controllers make subway journeys more comfortable with smooth braking and 
acceleration. Best of all, all the driver has to do is push the start button! Fuzzy 
logic was also put to work in elevators to reduce waiting time. Since then, the 
applications of Fuzzy Logic technology have virtually exploded, affecting things 
we use everyday.  
Take for example, the fuzzy washing machine. A load of clothes in it and press 
start, and the machine begins to churn, automatically choosing the best cycle. 
The fuzzy microwave, Place chili, potatoes, or etc in a fuzzy microwave and push 
single button, and it cooks for the right time at the proper temperature. The fuzzy 
car, manuvers itself by following simple verbal instructions from its driver. It can 
even stop itself when there is an obstacle immediately ahead using sensors. But, 
practically the most exciting thing about it, is the simplicity involved in operating 
it. 

Fuzzy Rules  

Human beings make decisions based on rules. Although, we may not be aware 
of it, all the decisions we make are all based on computer like if-then statements. 
If the weather is fine, then we may decide to go out. If the forecast says the 
weather will be bad today, but fine tomorrow, then we make a decision not to go 
today, and postpone it till tomorrow. Rules associate ideas and relate one event 
to another.  
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Fuzzy machines, which always tend to mimic the behavior of man, work the 
same way. However, the decision and the means of choosing that decision are 
replaced by fuzzy sets and the rules are replaced by fuzzy rules. Fuzzy rules also 
operate using a series of if-then statements. For instance, if X then A, if y then b, 
where A and B are all sets of X and Y. Fuzzy rules define fuzzy patches, which is 
the key idea in fuzzy logic.   
A machine is made smarter using a concept designed by Bart Kosko called the 
Fuzzy Approximation Theorem(FAT). The FAT theorem generally states a finite 
number of patches can cover a curve as seen in the figure below. If the patches 
are large, then the rules are sloppy. If the patches are small then the rules are 
fine.  

 

Fuzzy Patches 
In a fuzzy system this simply means that all our rules can be seen as patches 
and the input and output of the machine can be associated together using these 
patches. Graphically, if the rule patches shrink, our fuzzy subset triangles gets 
narrower. Simple enough? Yes, because even novices can build control systems 
that beat the best math models of control theory. Naturally, it is math-free 
system.  

Fuzzy Control  
Fuzzy control, which directly uses fuzzy rules is the most important application in 
fuzzy theory. Using a procedure originated by Ebrahim Mamdani in the late 70s, 
three steps are taken to create a fuzzy controlled machine:  

1) Fuzzification (Using membership functions to graphically describe a situation)  
2) Rule evaluation (Application of fuzzy rules)   
3) Defuzzification (Obtaining the crisp or actual results)   
As a simple example on how fuzzy controls are constructed, consider the 
following classic situation: the inverted pendulum. Here, the problem is to 
balance a pole on a mobile platform that can move in only two directions, to the 
left or to the right. The angle between the platform and the pendulum and the 
angular velocity of this angle are chosen as the inputs of the system. The speed 
of the platform hence, is chosen as the corresponding output.  

Step 1  
First of all, the different levels of output (high speed, low speed etc.) of the 
platform is defined by specifying the membership functions for the fuzzy_sets. 
The graph of the function is shown below 
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Similary, the different angles between the platform and the pendulum and... 

 
the angular velocities of specific angles are also defined  

 
Note: For simplicity, it is assumed that all membership functions are spreaded 

equally. Hence, this explains why no actual scale is included in the graphs. 

Step 2  
The next step is to define the fuzzy rules. The fuzzy rules are mearly a series of 
if-then statements as mentioned above. These statements are usually derived by 
an expert to achieve optimum results. Some examples of these rules are: 
i) If angle is zero and angular velocity is zero then speed is also zero. ii) If angle 
is zero and angular velocity is low then the speed shall be low.  
The full set of rules is summarised in the table below. The dashes are for 
conditions, which have no rules ascociated with them. This is don eto simplify the 
situation. 

An application of these rules is shown using specific values for angle and angular 
velocities. The values used for this example are 0.75 and 0.25 for zero and 
positive-low angles, and 0.4 and 0.6 for zero and negative-low angular velocities. 
These points sre on the graphs below.  
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Consider the rule "if angle is zero and angular velocity is zero, the speed is zero". 
The actual value belongs to the fuzzy set zero to a degree of 0.75 for "angle" and 
0.4 for "angular velocity". Since this is an AND operation, the minimum criterion 
is used , and the fuzzy set zero of the variable "speed" is cut at 0.4 and the 
patches are shaded up to that area. This is illustrated in the figure below. 
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Similarly, the minimum criterion is used for the other three rule. The following 
figures show the result patches yielded by the rule "if angle is zero and angular 
velocity is negative low, the speed is negative low", "if angle is positive low and 
angular velocity is zero, then speed is positive low" and "if angle is positive low 
and angular velocity is negative low, the speed is zero". 

 

 

 
The four results overlaps and is reduced to the following figure 

 

 
 

Step 3: The result of the fuzzy controller as of know is a fuzzy set (of speed). In 
order to choose an appropriate representative value as the final output(crisp 
values), defuzzification must be done. There are numerous defuzzification 



 75

methods, but the most common one used is the center of gravity of the set as 
shown below.  

 

 

 
What do you mean fuzzy ??!!  

Before illustrating the mechanisms which make fuzzy logic machines work, it is 
important to realize what fuzzy logic actually is. Fuzzy logic is a superset of 
conventional (Boolean) logic that has been extended to handle the concept of 
partial truth- truth-values between "completely true" and "completely false". As its 
name suggests, it is the logic underlying modes of reasoning which are 
approximate rather than exact. The importance of fuzzy logic derives from the 
fact that most modes of human reasoning and especially common sense 
reasoning are approximate in nature.  
The essential characteristics of fuzzy logic as founded by Zader Lotfi are as 
follows. 

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate 
reasoning.  

• In fuzzy logic everything is a matter of degree.  
• Any logical system can be fuzzified.  
• In fuzzy logic, knowledge is interpreted as a collection of elastic or, 

equivalently, fuzzy constraint on a collection of variables  
• Inference is viewed as a process of propagation of elastic constraints. 

The third statement hence, defines Boolean logic as a subset of Fuzzy logic.  
 
Fuzzy Sets  
 
Fuzzy Set Theory was formalized by Professor Lofti Zadeh at the University of 
California in 1965. What Zadeh proposed is very much a paradigm shift that first 
gained acceptance in the Far East and its successful application has ensured its 
adoption around the world.  
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A paradigm is a set of rules and regulations, which defines boundaries and tells 
us what to do to be successful in solving problems within these boundaries. For 
example the use of transistors instead of vacuum tubes is a paradigm shift - 
likewise the development of Fuzzy Set Theory from conventional bivalent set 
theory is a paradigm shift.  
Bivalent Set Theory can be somewhat limiting if we wish to describe a 
'humanistic' problem mathematically. For example, Fig 1 below illustrates 
bivalent sets to characterise the temperature of a room.  

 
 
The most obvious limiting feature of bivalent sets that can be seen clearly from 
the diagram is that they are mutually exclusive - it is not possible to have 
membership of more than one set (opinion would widely vary as to whether 50 
degrees Fahrenheit is 'cold' or 'cool' hence the expert knowledge we need to 
define our system is mathematically at odds with the humanistic world). Clearly, it 
is not accurate to define a transiton from a quantity such as 'warm' to 'hot' by the 
application of one degree Fahrenheit of heat. In the real world a smooth 
(unnoticeable) drift from warm to hot would occur.  
This natural phenomenon can be described more accurately by Fuzzy Set 
Theory. Fig.2 below shows how fuzzy sets quantifying the same information can 
describe this natural drift.  



 77

 
The whole concept can be illustrated with this example. Let's talk about people 
and "youthness". In this case the set S (the universe of discourse) is the set of 
people. A fuzzy subset YOUNG is also defined, which answers the question "to 
what degree is person x young?" To each person in the universe of discourse, 
we have to assign a degree of membership in the fuzzy subset YOUNG. The 
easiest way to do this is with a membership function based on the person's age.  

young(x) = { 1, if age(x) <= 20,  
 

(30-age(x))/10, if 20 < age(x) <= 30,  
 

0, if age(x) > 30 }  
 

A graph of this looks like:   
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Given this definition, here are some example values:  
Person    Age    degree of youth 
-------------------------------------- 
Johan     10        1.00  
Edwin     21        0.90 
Parthiban 25        0.50 
Arosha    26        0.40 
Chin Wei  28        0.20 
Rajkumar  83        0.00  
 
So given this definition, we'd say that the degree of truth of the statement 
"Parthiban is YOUNG" is 0.50.  
 
Note: Membership functions almost never have as simple a shape as age(x). 
They will at least tend to be triangles pointing up, and they can be much more 
complex than that. Furthermore, membership functions so far is discussed as if 
they always are based on a single criterion, but this isn't always the case, 
although it is the most common case. One could, for example, want to have the 
membership function for YOUNG depend on both a person's age and their height 
(Arosha's short for his age). This is perfectly legitimate, and occasionally used in 
practice. It's referred to as a two-dimensional membership function. It's also 
possible to have even more criteria, or to have the membership function depend 
on elements from two completely different universes of discourse.  
 
Fuzzy Set Operations.  
Union  

The membership function of the Union of two fuzzy sets A and B with 
membership functions and respectively is defined as the maximum 
of the two individual membership functions. This is called the maximum 
criterion.  
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The Union operation in Fuzzy set theory is the equivalent of the OR 
operation in Boolean algebra.  

Intersection 
The membership function of the Intersection of two fuzzy sets A and B 
with membership functions and respectively is defined as the 
minimum of the two individual membership functions. This is called the 
minimum criterion.  

 

 
The Intersection operation in Fuzzy set theory is the equivalent of the 
AND operation in Boolean algebra.  
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Complement 
The membership function of the Complement of a Fuzzy set A with 
membership function is defined as the negation of the specified 
membership function. This is caleed the negation criterion.  

 

 
The Complement operation in Fuzzy set theory is the equivalent of the NOT 
operation in Boolean algebra.  
The following rules which are common in classical set theory also apply to Fuzzy 
set theory.  
De Morgans law 

,  
Associativity 

 

 
Commutativity 

 
Distributive 

 

 
Glossary  
 
Universe of Discourse  

The Universe of Discourse is the range of all possible values for an input 
to a fuzzy system.  
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Fuzzy Set  
A Fuzzy Set is any set that allows its members to have different grades of 
membership (membership function) in the interval [0,1].  

Support  
The Support of a fuzzy set F is the crisp set of all points in the Universe of 
Discourse U such that the membership function of F is non-zero.  

Crossover point  
The Crossover point of a fuzzy set is the element in U at which its 
membership function is 0.5.  

Fuzzy Singleton  
A Fuzzy singleton is a fuzzy set whose support is a single point in U with a 
membership function of one. 

6.4 Concept of Learning 

One of the most often heard criticisms of AI is that machines cannot be called 
intelligent until they are able to learn to do new things and to adapt to new 
situations, rather than simply doing as they are told to do. There can be little 
question that the ability to adapt to new surroundings and to solve new problems 
is an important characteristic of intelligent entities. Can we expect to see such 
abilities in programs? Ada Augusta, one of the earliest philosophers of 
computing, wrote that 

The Analytical Engine has no pretensions whatever to originate anything. It can 
do whatever we know how to order it to perform.  

Several AI critics have interpreted this remark as saying that computers cannot 
learn. In fact, it does not say that at all. Nothing prevents us from telling a 
computer how to interpret its inputs in such a way that its performance gradually 
improves.  

Rather than asking in advance whether it is possible for computers to "learn," it is 
much more enlightening to try to describe exactly what activities we mean when 
we say "learning" and what mechanisms could be used to enable us to perform 
those activities. Simon has proposed that learning denotes changes in the 
system that are adaptive in the sense that they enable the system to do the same 
task or tasks drawn from the same population more efficiently and more 
effectively the next time. 

As thus defined, learning covers a wide range of phenomena. At one end of the 
spectrum is skill refinement. People get better at many tasks simply by practicing. 
The more you ride a bicycle or play tennis, the better you get. At the other end of 
the spectrum lies knowledge acquisition. As we have seen, many AI programs 
draw heavily on knowledge as their source of power. Knowledge is generally 
acquired through experience and such acquisition is the focus of this chapter. 

Knowledge acquisition itself includes many different activities. Simple storing of 
computed information, or rote learning, is the most basic learning activity. Many 
computer programs, e.g., database systems, can be said to "learn" in this sense, 
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although most people would not call such simple storage, learning. However, 
many AI programs are able to improve their performance substantially through 
rote-learning technique and we will look at one example in depth, the checker-
playing program of Samuel. 

Another way we learn is through taking advice from others. Advice taking is 
similar to rote learning, but high-level advice may not be in a form simple enough 
for a program to use directly in problem solving. The advice may need to be first 
operationalized. 

People also learn through their own problem-solving experience. After solving a 
Complex problem, we remember the structure of the problem and the methods 
we used to solve it. The next time we see the problem, we can solve it more 
efficiently. Moreover, we can generalize from our experience to solve related 
problems more easily contrast to advice taking, learning from problem-solving 
experience does not usually involve gathering new knowledge that was 
previously unavailable to the learning program. That is, the program remembers 
its experiences and generalizes from them, but does not add to the transitive 
closure of its knowledge, in the sense that an advice-taking program would, i.e., 
by receiving stimuli from the outside world. In large problem spaces, however, 
efficiency gains are critical. Practically speaking, learning can mean the 
difference between solving a problem rapidly and not solving it at all. In addition, 
programs that learn though problem-solving experience may be able to come up 
with qualitatively better solutions in the future. 

Another form of learning that does involve stimuli from the outside is learning 
from examples. We often learn to classify things in the world without being given 
explicit rules. For example, adults can differentiate between cats and dogs, but 
small children often cannot. Somewhere along the line, we induce a method for 
telling cats from dogs - based on seeing numerous examples of each. Learning 
from examples usually involves a teacher who helps us classify things by 
correcting us when we are wrong. Sometimes, however, a program can discover 
things without the aid of a teacher. 

AI researchers have proposed many mechanisms for doing the kinds of 
learning described above. In this chapter, we discuss several of them. But keep 
in mind throughout this discussion that learning is itself a problem-solving 
process. In fact, it is very difficult to formulate a precise definition of learning 
that distinguishes it from other problem-solving tasks. 

The five different learning methods are as follows 

1. Memorization (rote learning) 

Learning by memorization is the simplest form of learning. It requires the 
least amount of inference and is accomplished by simply copying the 
knowledge in the same form that it will be used directly into the knowledge 
base. We use this type of learning when we memorize  

2. Direct Instruction (by being told) 
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It is slightly different more complex form of learning. This type of learning 
requires more inference than rote learning since the knowledge must be 
transformed into an operational form before being integrated into the 
knowledge base. We use this type of learning when a teacher presents a 
number of facts directly to us in well-organized manner.  

3. Analogy 

Analog learning is the process of learning a new concept or solution through 
the use of similar known concepts or solutions. We use this type of learning, 
when solving problems on an exam where previously learned examples 
serve as a guide or when we learn to drive a truck using our knowledge of 
car. This form of learning requires still more inferring than either of the 
previous forms, since difficult transformations must be made between the 
known and unknown situations. 

4. Induction 

It is the power full form of learning which, like analogical learning, also 
requires the use of inferring than the first two methods. This form of learning 
requires the use inductive inference, a form of invalid but useful inference. 
We use inductive learning when we formulate a general concept after 
seeing a number of instances or examples of the concept.  

5. Deduction 

It is accomplished through a sequence of deductive inference steps using 
known facts. Fro known facts, new facts or relationship  

 

6.5 Learning Automation 

The theory of learning automata was first introduced in 1961 (Tsetlin, 1961). 
Since that time these systems have been studied intensely, both analytically and 
through simulations (Lakshmivarahan, 1981). Learning automata systems are 
finite set adaptive systems, which interact iteratively with a general environment. 
Through a probabilistic trial-and-error response process they learn to choose or 
adapt to a behavior that produces the best response. They are, essentially, a 
form of weak, inductive learners. 

From Figure given below, we see that the learning model for learning automata 
has been simplified for just two components, an automaton (learner) and an 
environment. The learning cycle begins with an input to the learning automata 
system from the environment. This input elicits one of a finite number of possible 
responses and then provides some form of feedback to the automaton in return. 
The automaton to alter its stimulus-response mapping structure to improve its 
behavior in a more favorable way uses this feedback. 

As a simple example, suppose a learning automata is being used to learn the 
best temperature control setting for your office each morning. It may select any 
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one of ten temperature range settings at the beginning of each day. Without any 
prior knowledge of your temperature preferences, the automaton randomly 
selects a first setting using the probability vector corresponding to the 
temperature settings. 

 
Figure Learning Automaton Model 

 
Figure:  Temperature Control Model 

Since the probability values are uniformly distributed, any one of the settings will 
be selected with equal likelihood. After the selected temperature has stabilized, 
the environment may respond with a simple good-bad feedback response. If the 
response is good, the automata will modify its probability vector by rewarding the 
probability corresponding to the good setting with a positive increment and 
reducing all other probabilities proportionately to maintain the sum equal to 1. If 
the response is bad, the automaton will penalize the selected setting by reducing 
the probability corresponding to the bad setting and increasing all other values 
proportionately. This process is repeated each day until the good selections have 
high probability values and all bad choices have values near zero. Thereafter, the 
system will always choose the good settings. If, at some point, in the future your 
temperature preferences change, the automaton can easily readapt. 

Learning automata have been generalized and studied in various ways. One 
such generalization has been given the special name of collective learning 
automata (CLA). CLAs are standard learning automata systems except that 
feedback is not provided to the automaton after each response. In this case, 
several collective stimulus-response actions occur before feedback is passed to 
the automaton. It has been argued (Bock, 1976) that this type of learning more 
closely resembles that of human beings in that we usually perform a number or 
group of primitive actions before receiving feedback on the performance of such 
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actions, such as solving a complete problem on a test or parking a car. We 
illustrate the operation of CLAs with an example of learning to play the game of 
Nim in an optimal way. 

Nim is a two-person zero-sum game in which the players alternate in removing 
tokens from an array that initially has nine tokens. The tokens are arranged into 
three rows with one token in the first row, three in the second row, and five in the 
third row (Figure 7.10). 

 

 

 

 

Figure : Nim Initial Configuration 

The first player must remove at least one token but not more than all the tokens 
in any single row. Tokens can only be removed from a single row during each 
payer’s move. The second player responds by removing one or more tokens 
remaining in any row. Players alternate in this way until all tokens have been 
removed; the loser is the player forced to remove the last token. 

We will use the triple (n1, n2, n3) to represent the states of the game at a given 
time where n1, n2 and n3 are the numbers of tokens in rows 1, 2, and 3, 
respectively. We will also use a matrix to determine the moves made by the CLA 
for any given state. The matrix of Figure 7.11 has heading columns which 
correspond to the state of the game when it is the CLA’s turn to move, and row 
headings which correspond to the new game state after the CLA’s turn to move, 
and row headings which correspond to the new game state after the CLA has 
completed a move. Fractional entries in the matrix are transition probabilities 
used by the CLA to execute each of its moves. Asterrisks in the matrix represent 
invalid moves. 

Beginning with the initial state (1, 3, 5), suppose the CLA’s opponent removes 
two tokens from the third row resulting in the new state (1, 3, 3). If the ClA then 
removes all three tokens from the second row, the resultant state is (1, 0, 3). 
Suppose the opponent now removes all remaining tokens from the third row. This 
leaves the CLA with a losing configuration of (1, 0, 0). 
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Figure: CLA Internal Representation of Game States  

As the start of the learning sequence, the matrix is initialized such that the 
elements in each column are equal (uniform) probability values. For example, 
since there are eight valid moves from the state (1, 3, 4) each column element 
under this state corresponding to a valid move has been given uniform probability 
values corresponding to all valid moves for the given column state. 

The CLA selects moves probabilistically using the probability values in each 
column. So, for example, if the CLA had the first move, any row intersecting with 
the first column not containing an asterisk would be chosen with probability 

9
1 . 

This choice then determines the new game state from which the opponent must 
select a move. The opponent might have a similar matrix to record game states 
and choose moves. A complete game is played before the CLA is given any 
feedback, at which time it is informed whether or not its responses were good or 
bad. This is the collective feature of the CLA. 

If the CLA wins a game, increasing the probability value in each column 
corresponding to the winning move rewards all moves made by the CLA during 
that game. All non-winning probabilities in those columns are reduced equally to 
keep the sum in each column equal to 1. If the CLA loses a game, reducing the 
probability values corresponding to each losing move penalizes the moves 
leading to that loss. All other probabilities in the columns having a losing move 
are increased equally to keep the column totals equal to 1. 

After a number of games have been played by the CLA, the matrix elements that 
correspond to repeated wins will increase toward one, while all other elements in 
the column will decrease toward zero. Consequently, the CLA will choose the 
winning moves more frequently and thereby improve its performance. 

Simulated games between a CLA and various types of opponents have been 
performed and the results plotted (Bock, 1985). It was shown, for example, that 
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two CLAs playing against each other required about 300 games before each 
learned to play optimally. Note, however, that convergence to optimality can be 
accomplished with fewer games if the opponent always plays optimally (or 
poorly), since, in such a case, the CLA will repeatedly lose (win) and quickly 
reduce (increase) the losing (winning) move elements to zero (one). It is also 
possible to speed up the learning process through the use of other techniques 
such as learned heuristics. 

Learning systems based on the learning automaton or CLA paradigm are fairly 
general for applications in which a suitable state representation scheme can be 
found. They are also quite robust learners. In fact, it has been shown that an LA 
will converge to an optimal distribution under fairly general conditions if the 
feedback is accurate with probability greater 0.5 (Narendra and Thathachar, 
1974). Of course, the rate of convergence is strongly dependent on the reliability 
of the feedback. 

Learning automata are not very efficient learners as was noted in the game-
playing example above. They are, however, relatively easy to implement, 
provided the number of states is not too large. When the number of states 
becomes large, the amount of storage and the computation required to update 
the transition matrix becomes excessive. 

Potential applications for learning automata include adaptive telephone routing 
and control. Such applications have been studied using simulation programs 
(Narendra et al., 1977). 

6.6 Genetic Algorithm 

Genetic Algorithms allow you to explore a space of parameters to find solutions 
that score well according to a "fitness function". They are a way to implement 
function optimization: given a function g(x) (where x is typically a vector of 
parameter values), find the value of x that maximizes (or minimizes) g(x). This is 
an unsupervised learning problem―the right answer is not known beforehand. 
For pathfinding, given a starting position and a goal, x is the path between the 
two and g(x) is the cost of that path. Simple optimization approaches like hill-
climbing will change x in ways that increase g(x). Unfortunately in some 
problems, you reach "local maxima", values of x for which no nearby x has a 
greater value of g, but some faraway value of x is better. Genetic algorithms 
improve upon hill climbing by maintaining multiple x, and using evolution-inspired 
approaches like mutation and crossover to alter x. Both hill-climbing and genetic 
algorithms can be used to learn the best value of x. For path finding, however, 
we already have an algorithm (A*) to find the best x, so function optimization 
approaches are not needed. 

Genetic Programming takes genetic algorithms a step further, and treats 
programs as the parameters. For example, you would breeding path finding 
algorithms instead of paths, and your fitness function would rate each algorithm 
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based on how well it does. For path finding, we already have a good algorithm 
and we do not need to evolve a new one. 

It may be that as with neural networks, genetic algorithms can be applied to 
some portion of the path-finding problem. However, I do not know of any uses in 
this context. Instead, a more promising approach seems to be to use path 
finding, for which solutions are known, as one of many tools available to evolving 
agents. 

6.7 Learning by Induction 

Classification is the process of assigning, to a particular input, the name of a 
class to which it belongs. The classes from which the classification procedure 
can choose can be described in a variety of ways. Their definition will depend on 
the use to which they will be put. 

Classification is an important component of many problem-solving tasks. In its 
simplest form, it is presented as a straightforward recognition task. An example 
of this is the question "What letter of the alphabet is this?" But often classification 
is embedded inside another operation. To see how this can happen, consider a 
problem-solving system that contains the following production rule: 

If: the current goal is to get from place A to place B, and 

there is a WALL separating the two places 

then: look for a DOORWAY in the WALL and go through it. 

To use this rule successfully, the system's matching routine must be able to 
identify an object as a wall. Without this, the rule can never be invoked. Then, to 
apply the rule, the system must be able to recognize a doorway.  

Before classification can be done, the classes it will use must be defined. This 
can be done in a variety of ways, including: 

Isolate a set of features that are relevant to the task domain. Define each class 
by a weighted sum of values of these features. Each class is then defined by a 
scoring function that looks very similar to the scoring functions often used in 
other situations, such as game playing. Such a function has the form. 

 C1t1 + C2V2 + C3t3 + ... 

Each t corresponds to a value of a relevant parameter, and each c represents the 
weight to be attached to the corresponding t. Negative weights can be used to 
indicate features whose presence usually constitutes negative evidence for a 
given class. 

For example, if the task is weather prediction, the parameters can be such 
measurements as rainfall and location of cold fronts. Different functions can be 
written to combine these parameters to predict sunny, cloudy, rainy, or snowy 
weather.  
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Isolate a set of features that are relevant to the task domain. Define each class 
as a structure composed of those features. For example, if the task is to identify 
animals, the body of each type of animal can be stored as a structure, with 
various features representing such things as color, length of neck, and feathers. 

There are advantages and disadvantages to each of these general approaches. 
The statistical approach taken by the first scheme presented here is often more 
efficient than the structural approach taken by the second. But the second is 
more flexible and more extensible.  

Regardless of the way that classes are to be described, it is often difficult to 
construct, by hand, good class definitions. This is particularly true in domains that 
are not well understood or that change rapidly. Thus the idea of producing a 
classification program that can evolve its own class definitions is appealing. This 
task of constructing class definitions is called concept learning, or induction. The 
techniques used for this task J must, of course, depend on the way that classes 
(concepts) are described. If classes are described by scoring functions, then 
concept learning can be done using the technique of coefficient adjustment. If, 
however, we want to define classes structurally, some other technique for 
learning class definitions is necessary. In this section, we present three such 
techniques. 

6.8 Neural Networks 

Neural networks are structures that can be "trained" to recognize patterns in 
inputs. They are a way to implement function approximation: given y1 = f(x1), y2 = 
f(x2), ..., yn = f(xn), construct a function f' that approximates f. The approximate 
function f' is typically smooth: for x' close to x, we will expect that f'(x') is close to 
f'(x). Function approximation serves two purposes: 

• Size: the representation of the approximate function can be significantly 
smaller than the true function.  

• Generalization: the approximate function can be used on inputs for which 
we do not know the value of the function.  

Neural networks typically take a vector of input values and produce a vector of 
output values. Inside, they train weights of "neurons". Neural networks use 
supervised learning, in which inputs and outputs are known and the goal is to 
build a representation of a function that will approximate the input to output 
mapping. 

In path finding, the function is f(start, goal) = path. We do not already know the 
output paths. We could compute them in some way, perhaps by using A*. But if 
we are able to compute a path given (start, goal), then we already know the 
function f, so why bother approximating it? There is no use in generalizing f 
because we know it completely. The only potential benefit would be in reducing 
the size of the representation of f. The representation of f is a fairly simple 
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algorithm, which takes little space, so I don't think that's useful either. In addition, 
neural networks produce a fixed-size output, whereas paths are variable sized. 

Instead, function approximation may be useful to construct components of path 
finding. It may be that the movement cost function is unknown. For example, the 
cost of moving across an orc-filled forest may not be known without actually 
performing the movement and fighting the battles. Using function approximation, 
each time the forest is crossed, the movement cost f(number of orcs, size of 
forest) could be measured and fed into the neural network. For future pathfinding 
sessions, the new movement costs could be used to find better paths. Even 
when the function is unknown, function approximation is useful primarily when 
the function varies from game to game. If a single movement cost applies every 
time someone plays the game, the game developer can precompute it 
beforehand. 

Another function that is could benefit from approximation is the heuristic. The 
heuristic function in A* should estimate the minimum cost of reaching the 
destination. If a unit is moving along path P = p1, p2, ..., pn, then after the path is 
traversed, we can feed n updates, g(pi, pn) = (actual cost of moving from i to n), 
to the approximation function h. As the heuristic gets better, A* will be able to run 
quicker. 

Neural networks, although not useful for path finding itself, can be used for the 
functions used by A*. Both movement and the heuristic are functions that can 
be measured and therefore fed back into the function approximation. 
 
The Backpropagation Algorithm 
 
1. Propagates inputs forward in the usual way, i.e.  

• All outputs are computed using sigmoid thresholding of the inner 
product of the corresponding weight and input vectors.  

• All outputs at stage n are connected to all the inputs at stage n+1 

2. Propagates the errors backwards by apportioning them to each unit according 
to the amount of this error the unit is responsible for.  
We now derive the stochastic Backpropagation algorithm for the general case. 
The derivation is simple, but unfortunately the bookkeeping is a little messy.  

• input vector for unit j (xji = ith input to the jth unit)  

• weight vector for unit j (wji = weight on xji)  

• , the weighted sum of inputs for unit j  
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• oj = output of unit j ( )  
• tj = target for unit j  
• Downstream(j) = set of units whose immediate inputs include the output of 

j  
• Outputs = set of output units in the final layer  

Since we update after each training example, we can simplify the notation 
somewhat by imagining that the training set consists of exactly one example and 
so the error can simply be denoted by E.  

We want to calculate for each input weight wji for each output unit j. Note 
first that since zj is a function of wji regardless of where in the network unit j is 
located,  

 
 

Furthermore, is the same regardless of which input weight of unit j we are 

trying to update. So we denote this quantity by .  

Consider the case when . We know  

 
 
 

Since the outputs of all units are independent of wji, we can drop the 
summation and consider just the contribution to E by j.  
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Thus  

  
(17)

 
 
Now consider the case when j is a hidden unit. Like before, we make the 
following two important observations.  
1.  

For each unit k downstream from j, zk is a function of zj  
2.  

The contribution to error by all units in the same layer as j is 
independent of wji 

We want to calculate for each input weight wji for each hidden unit j. Note 
that wji influences just zj which influences oj which influences 

each of which influence E. So we can write  
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Again note that all the terms except xji in the above product are the same 
regardless of which input weight of unit j we are trying to update. Like before, we 

denote this common quantity by . Also note that , and 

. Substituting,  

 
 
Thus,  

  
(18)

 
 
We are now in a position to state the Backpropagation algorithm formally.  
 
Formal statement of the algorithm:  

Stochastic Backpropagation (training examples, , ni, nh, no)  

Each training example is of the form where is the input vector and is 

the target vector. is the learning rate (e.g., .05). ni, nh and no are the number of 
input, hidden and output nodes respectively. Input from unit i to unit j is denoted 
xji and its weight is denoted by wji.  

• Create a feed-forward network with ni inputs, nh hidden units, and no 
output units.  

• Initialize all the weights to small random values (e.g., between -.05 and 
.05)  

• Until termination condition is met, Do  

o For each training example , Do  

1.  Input the instance and compute the output ou of every unit.  
2. For each output unit k, calculate  
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3. For each hidden unit h, calculate  

 
 
 

4. Update each network weight wji as follows:  

 
6.9 Summary 

In this lesson we have investigated different types of structural knowledge 
representation methods. We considered associative networks (semantic net) , , a 
representation based on a structure of linked nodes(concepts) and arcs 
(relations) connecting the nodes. With these networks we saw how related 
concepts could be structured into cohesive units and exhibited as graphical 
representation.  A frame is a collection of attributes (usually called slots) and 
associated values (and possibly constraints on values) that describe some entity 
in the world. In this lesion we also described a special frame-like structure called 
scripts. Scripts are used to represent stereotypical patterns for commonly 
occurring events.  Like a play scripts contains actors, roles, props, and scenes, 
which combine to represent a familiar situation. Scripts have been used in a 
number of programs, which read and “understood” language in the form of 
stories. 

6.10 Key Words 

Probabilistic Reasoning, Use of Certainty Factors, Fuzzy Logic, Concept of 
Learning, Learning Automata, Genetic Algorithm, Learning by Induction, Neural 
Networks, Back Propagation Algorithm. 

 

6.11 Self Assessments Questions 

Answer the following questions 

Q1. How machine learning distinguished from general knowledge acquisition? 

Q2.  Describe the role of each component of a general learning model and why 
it is needed for the learning process. 
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Q3. Explain why inductive learning should require more inference than learning 
by being told (instructions). 

Q4. Describe the similarities  and difference between learning automata and 
genetic algorithms. 

Q5. Write short note on the following: - 

d. Probabilistic Reasoning 

e. Use of Certainty Factors 

f. Fuzzy Logic 

g. Neural Network 
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7.0 Objective 
The present lesson elaborates the application of AI i.e. Expert System. Expert System is a 
program that is expertise in a particular domain. MYCIN and RI are also discussed as 
case study of an expert system. Upon completion of this lesson students know about 
distinguish features of an expert system and how to use the existing expert system (i.e. 
MYCIN & RI).  
 
7.1 What is Expert System? 
 
An Expert System contains knowledge about a specific field to assist human 
experts or provide information to people who do not have access to an expert in 
the particular field. An Expert System act as intelligent assistants to human 
experts. Knowledge Engineer and Domain Expert are the key personnel, work 
together to design an expert system 

 

7.1.1 Need and Justification of Expert Systems 
 

Human experts in any field are frequently in great demand and are therefore, 
usually in short supply. One solution of this problem is Expert system. An Expert 
system may be defined as an AI computer program specially designed to 
represent human expertise in a particular domain (area of Expertise). Expert 
systems have been proven to be effective in a number of problem domains, 
which normally require the kind of intelligence possessed by a human expert.  

According to Paul Harmon and David King, expert system can help meet the 
following needs: 

 New approaches to business and productivity, 
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 Expertise, 

 Knowledge 

 Competence, and  

 Smart automated equipment. 

 

The areas of application are almost endless. Wherever human expertise is 
needed to solve a problem, expert systems are most likely of the options sought. 
Application domain includes Medical, law, chemistry, biology engineering, 
finance, banking, manufacturing, aerospace military operations, meteorology, 
geology, geophysics and many more. In this lesson we attempts to demystify 
expert systems by examining, in detail, what they are and how they are 
developed. Also, case study of MYCIN & RI is provided to increase your 
familiarities with these remarkable programs. 
 
 
7.2 Components of an Expert System 
 
Although components of an Expert System vary in their design, most Expert 
Systems have a knowledge base, an inference engine and a user interface.  
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Figure 7.1: - Expert System 
Components 
 
 
The component of expert system that contains system’s knowledge is called its 
knowledge base. A knowledge base contains both declarative knowledge  (facts 
about objects, events, and situations) and procedural knowledge (information 
about course of action). The inference engine of an expert system controls how 
and when the information to the Knowledge base is applied.  The user interface 
component enables you to communicate with an expert system. The 
communication performed by a user interface is bi-directional. 
 
 
 

7.3 Characteristics Features of an Expert System 

 Although each system is unique, certain features are desirable for any expert 
system. 

 The program should be useful.  
 An expert system should be developed to meet a specified need.  
 The program should be usable. An expert system should be designed so that 

even a layman finds it’s easy to use. 
 The program should be educational when appropriate. 
 The program should be able to explain its advice. 
 The program should be respond to simple questions. 
 The program should be learn new knowledge. 
  The program’s knowledge should be easily modified. 
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7.4 Knowledge Acquisition 

Knowledge acquisition is the process of adding new knowledge to a knowledge 
base & refining or otherwise improving knowledge that was previously acquired. 
Knowledge acquisition is the most important aspect of the expert system 
development. It is referred to as the process of getting and transforming 
appropriate information out of an expert’s head, document or any source into 
some manageable form. The idea of getting knowledge from an expert and 
presenting that information is a very common occurrence eg: Reporters, Journals 
and writers are a regular conductor of these processes. They are classed as 
knowledge engineers who interview many people and then publish their 
information in the newspapers.  

The three major approaches for knowledge acquisition are:  

1. Interviewing Expert  

This involves the knowledge engineer having a face-to-face interview with the 
expert. This technique does not require any equipment. It’s just a verbal talking 
with each other. Therefore it is important that the knowledge engineer has good 
communication skills and the expert should be able to express his knowledge 
with the engineer. The engineer collects lot of information by asking many 
questions and programs it into the knowledge base.  

2. Learning by Being Told  

In this approach the expert system user-interface conducts a conversation or 
discussion with the expert and the expert has to represent and refine his/her own 
knowledge from what he understands. The knowledge engineer handles the 
design and makes the activity easier to understand.  

3. Learning by Observation 

This approach the expert system gives the expert some sample problem outline 
or case studies, which the expert has to solve. The problems are usually 
examples of previous events which the expert has to solve using an algorithm 
known as Induction. This algorithm helps expert to gain knowledge and it 
simplifies those examples into rules.  

7.4.1 Knowledge Acquisition Process  
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The expert system development uses a methodology known as Rapid 
Prototyping. These involve selection and development of a section of a system, 
which is tested on part of the system for refinement, and further development. 
Once the initial development i.e. the design and knowledge base decisions have 
been made; a prototype (a trial model) is developed to allow other developer to 
test their ideas of design. This will enable them to test each stage as it is 
developed and see if the system is working properly.  

7.4.2 Knowledge Acquisition stages 

Knowledge acquisition has five stages throughout the development. The stages 
are as following:  

 Identification  

This stage identifies the problems and the knowledge engineer becomes aware 
of the domain, its goals and selects the correct material.  

 Conceptualization  

This defines how the concepts or ideas and the associations between them are 
outlined and how experts relate them.  

 Formalization 

Here the knowledge engineer organizes the concepts, tasks and other 
information into formal and clear representation.  

 Implementation 

Here the knowledge rules are put into a structured form for the expert system tool 
and a prototype (trial model) is created for testing out the design and the 
processes. The knowledge engineer has to produce a written documentation that 
will connect the knowledge base topics with the original data that were created 
earlier.  

 Testing 

The prototype system is tested for its efficiency and accuracy to see if it is 
working as required. In order to do this a small scenario or problem set is tested 
and the results from this system are used to alter or improve the prototype 
system. 

7.5 MYCIN 

MYCIN is an expert system that helps diagnose bacteriological blood infections. 
The development of MYCIN began at Stanford University. MYCIN is an expert 



 101

system, which diagnoses infectious blood diseases and determines a 
recommended list of therapies for the patient. As part of the Heuristic 
Programming Project at Stanford, several projects directly related to MYCIN were 
also completed including a knowledge acquisition component called 
THEIRESIUS, a tutorial component called GUIDON, and a shell component 
called EMYCIN (for Essential MYCIN). EMYCIN was used to build other 
diagnostic systems including PUFF, a diagnostic expert for pulmonary diseases. 
EMYCIN also became the design model for several commercial expert system 
building tools. 

MYCIN’s performance improved significantly over a period of several year as 
additional knowledge was added. Tests indicate that MYCIN’ performance now 
equals or exceeds that of experienced physicians. The initial MYCIN knowledge 
base contained about only 200 rules. This number was gradually increased to 
more than 600 rules by the early 1980s. The added rules significantly improved 
MYCIN’s performance leading to a 65% success record that compared favorably 
with experienced physicians who demonstrated only an average 60% success 
rate. 

Subgoaling in MYCIN 

MYCIN is a heterogeneous program, consisting of many different modules. There 
is a part of MYCIN's control structure that performs a quasi-diagnostic function. 
But the goals to be achieved are not physical goals, involving the movement of 
objects in space, but reasoning goals that involve the establishment of diagnostic 
hypothesis.  

This section concentrates upon the diagnostic module of MYCIN, giving a 
simplified account of its function, structure and runtime behavior.   

Treating blood infections 

Firstly, we need to give a brief description of MYCIN's domain: treatment of blood 
infections. This description pre-supposes no specialized medical knowledge on 
the part of the reader. But, as with any expert system, having some 
understanding of the domain is crucial to understand what the program does. 

An 'anti-microbial agent' is any drug designed to kill bacteria or arrest their 
growth. Some agents are too toxic for therapeutic purposes, and there is no 
single agent effective against all bacteria. The selection of therapy for bacterial 
infection can be viewed as a four-part decision process: 

• Deciding if the patient has a significant infection; 

• Determining the (possible) organism(s) involved; 

• Selecting a set of drugs that might be appropriate; 

• Choosing the most appropriate drug or combination of drugs. 
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Samples taken from the site of infection are sent to a microbiology laboratory for 
culture, that is, an attempt to grow organisms from the sample in a suitable 
medium. 

Early evidence of growth may allow a report of the morphological or staining 
characteristics of the organism. However, even if an organism is identified, the 
range of drugs it is sensitive to may be unknown or uncertain. 

MYCIN is often described as a diagnostic program, but this is not so. Its purpose 
is to assist a physician who is not an expert in the field of antibiotics with the 
treatment of blood infections. In doing so, it develops diagnostic hypotheses and 
weights them, but it need not necessarily choose between them. Work on MYCIN 
began in 1972 as collaboration between the medical and AI communities at 
Stanford University. The most complete single account of this work is Short-life 
(1976). 

There have been a number of extensions, revisions and abstractions of MYCIN 
since 1976, but the basic version has five components shown in the fig. 7.2, 
which shows the basic pattern of information flow between the modules.  

(1} A-knowledgebase, which contains factual and judgmental knowledge 
about the domain. 

(2)  A dynamic patient database containing information about a particular 
case. 

(3)  A consultation program, which asks questions, draws conclusions, and 
gives advice about a particular case based on the patient data and the 
static knowledge. 

(4)  An explanation program, which answers questions and justifies its advice, 
using static knowledge and a trace of the program’s execution. 

(5) A knowledge acquisition program for adding new rules and changing 
existing ones. 

The system consisting of components (l)-(3) is the problem solving pan of 
MYCIN, which generates hypotheses with respect to the offending organisms, 
and makes therapy recommendations based on these hypotheses. 
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Figure 7.2: Organization of MYCIN 

MYCIN's knowledge base 

MYCIN's knowledge base is organized around a set of rules of the general form 

if condition1 and ... and conditionm hold 

then draw conclusion1 and... and conclusionn 

encoded as data structures of the LISP programming language  

Figure 7.3 shows the English translation of a typical MYCIN rule for inferring 
class of an organism. The program itself provides this translation. Such rules are 
called ORGRULES and they attempt to cover such organisms as streptococcus, 
pseudomonas, and entero-bacteria. 

The rule says that if an isolated organism appears rod-shaped, stains in a certain 
way, and grows in the presence of oxygen, then it is more likely to be in the class 
entero-bacteria. The number 0.8 is called the tally of the rule, which says how 
certain conclusion is given, that the conditions are satisfied. The use of the tally 
is explained below. Each rule of this kind can be thought of as encoding a piece 
of human knowledge whose applicability depends only upon the context 
established by the conditions of the rule. 

The conditions of a rule can also be satisfied with varying degrees of certainty, 
the import of such rules roughly is as follows: 

if condition1 holds with certainty x1 ... and conditionm holds with certainty xm 

then draw conclusion1 with certainty y1 and... and conclusionn with certainty yn 
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where the certainty associated with each conclusion is a function of the 
combined certainties of the conditions and the tally, which is meant to reflect our 
degree of confidence in the application of the rule. 

In summary, a rule is a premise-action pair and such rules are sometimes called 
‘productions' for purely historical reasons. Premises are conjunction of 
conditions, and their certainty is a function of the certainty of these conditions. 
Conditions are either proposition, which evaluate the truth or falsehood with 
some degree of certainty, (for example 'the organism is rod-shaped') or 
disjunctions of such conditions. Actions are either conclusions to be drawn with 
some appropriate degree of certainty, for example the identity of some organism, 
or instructions to be carried out, for example compiling a list of therapies. 

We will explore the details of how rules are interpreted and scheduled for 
application in the following sections, but first we must look at MYCIN's other 
structures for representing medical knowledge. 

IF 1) The stain of the organism is gramneg, and 

2) The morphology of the organism is rod, and 

3) The aerobicity of the organism is aerobic 

THEN  There is strongly suggestive evidence (.8) that 

the class of the organism is entero-bacteria 

               A MYCIN ORGRULE for drawing the conclusion enterobacteriaaceae 

In addition to rules, the knowledge base also stores facts and definitions in 
various forms: 

• simple lists, for example the list of all organisms known to the system; 

• knowledge tables, which contain records of certain clinical parameters and 
the values they take under various circumstances, for example the 
morphology (structural shape) of every bacterium known to the system; 

• a classification system for clinical parameters according to the context in 
which they apply, for example whether they are attributes of patients or 
organisms. 

Much of the knowledge not contained in the rules resides in the properties 
associated with the 65 clinical parameters known to MYCIN. For example, shape 
is an attribute of organisms which can take on various values, such as 'rod' and 
'coccus.' Parameters are also assigned properties by the system for its own 
purposes. The main ones either (i) help to monitor the interaction with the user, 
or (ii) provide indexes which guides the application of rules. 

Patient information is stored in a structure called the context tree, which serves to 
organize case data. Figure on next page shows a context tree representing a 
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particular patient, PATIENT-1, with three associated cultures (samples, such as 
blood samples, from which organisms may be isolated) and a recent operative 
procedure that may need to be taken into account (for example, because drugs 
were involved, or because the procedure involves particular risks of infection). 
Associated with cultures are organisms that are suggested by laboratory data, 
and associated with organisms are drugs that are effective against them. 

Imagine that we have the following data stored in a record structure associated 
with the node for ORGANISM-1: 

GRAM = (GRAMNEG 1.0) 

MORPH = (ROD .8) (COCCUS .2) 

AIR = (AEROBIC .6) 

with the following meaning: 

• the Gram stain of ORGANISM-1 is definitely Gram negative; 

• ORGANISM-1 has a rod morphology with certainty 0.8 and a coccus 
morphology with certainty 0.2; 

• ORGANISM-1 is aerobic (grows in air) with certainty 0.6. 

 
Figure 7.3: A typical MYCIN context tree 

Suppose now that the rule of conclusion above is applied. We want to compute 
the certainty that all three conditions of the rule 

IF   1) the stain of the organism is gramneg, and 

2) the morphology of the organism is rod, and 

3) the aerobicity of the organism is aerobic 
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THEN  there is strongly suggestive evidence (0.8) that the class of 
the organism is entero-bacteria. 

are satisfied by the data. The certainty of the individual conditions is 1.0, 0.8 and 
0.6 respectively, and the certainty of their conjunction is taken to be the minimum 
of their individual certainties, hence 0.6. 

The idea behind taking the minimum is that we are only confident in a 
conjunction of conditions to the extent that we are confident in its least inspiring 
element. This is rather like saying that a chain is only as strong as its weakest 
link. By an inverse argument, we argue that our confidence in a disjunction of 
conditions is as strong as the strongest alternative, that is, we take the maximum. 
This convention forms part of a style of inexact reasoning called fuzzy logic.  

In the case, we draw the conclusion that the class of the organism is entero-
bacteria with a degree of certainty equal to  

0.6 x 0.8 = 0.48 

The 0.6 represents our degree of certainty in the conjoined conditions, while the 
0.8 stands for our degree of certainty in the rule application. These degrees of 
certainty are called certainty factors (CFs). Thus, in the general case, 

CF(action) x CF(premise) x CF(rule). 

Where we revisit the whole topic of how to represent uncertainty. It turns out that 
the CF model is not always in agreement with the theory of probability; in other 
words, it is not always correct from a mathematical point of view. However, the 
computation of certainty factors is much more tractable than the computation of 
the right probabilities, and the deviation does not appear to be very great in the 
MYCIN application. 

MYCIN’s control structure 

MYCIN has a top-level goal rule which define the whole task of the consultation 
system, which is paraphrased below: 

IF  1) there is an organism which requires therapy and 

2) consideration has been given to any other organisms requiring     
therapy 

THEN compile a list of possible therapies, and determine the best one in 
this list. 

A consultation session follows a simple two-step procedure: 

• Create the patient context as the top node in the context tree; 

• Attempt to apply the goal rule to this patient context. 

Applying the rule involves evaluating its premise, which involves finding out if 
there is indeed an organism, which requires therapy. In order to find this out, it 
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must first find out if there is indeed an organism present which is associated with 
a significant disease. This information can either be obtained from the user 
directly, or via some chain of inference based on symptoms and laboratory data 
provided by the user. 

The consultation is essentially a search through a tree of goals. The top goal at 
the root of the tree is the action part of the goal rule, that is, the recommendation 
of a drug therapy. Subgoals further down the tree include determining the 
organism involved and seeing if it is significant. Many of these subgoals have 
subgoals of their own, such as finding out the stain properties and morphology of 
an organism. The leaves of the tree are fact goals, such as laboratory data, 
which cannot be deduced. 

A special kind of structure, called an AND/OR tree, is very useful for representing 
the way in which goals can be expanded into subgoals by a program. The basic 
idea is that root node of the tree represents the main goal, terminal nodes 
represent primitive actions that can be carried out, while non-terminal nodes 
represent subgoals that are susceptible to further analysis. There is a simple 
correspondence between this kind of analysis and the analysis of rule sets. 

Consider the following set of condition-action rules: 

if X has BADGE and X has GUN, then X is POLICE 

if X has REVOI.VER or X as PISTOL or X has RIFLE, then X has GUN 

if X has SHIELD, then X has BADGE 

We can represent this rule set in terms of a tree of goals, so long as we maintain 
the distinction between conjunctions and disjunctions of subgoals. Thus, we draw 
an arc between the links connecting the nodes BADGE and GUN with the node 
POLICE, to signify that both subgoals BADGE and GUN must be satisfied in 
order to satisfy the goal POLICE. However, there is no arc between the links 
connecting REVOLVER and PISTOL and RIFLE with GUN, because satisfying 
either of these will satisfy GUN. Subgoals as BADGE can have a single child, 
SHIELD, signifying that a shield counts as a badge. 

The AND/OR tree in Figure 7.4 can be thought of as a way of representing the 
search space for POLICE, by enumerating the ways in which different operators 
can be applied in order to establish POLICE as true. 
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Figure 7.4: Representing a rule set as an AND/OR tree 

This kind of control structure is called backward chaining, since the program 
reasons backward from what it wants to prove towards the facts that it needs, 
rather than reasoning forward from the facts that it possesses. In MYCIN, goals 
were achieved by breaking them down into sub goals to which operators could 
be applied. Searching for a solution by backward reasoning is generally more 
focused than forward chaining, as we saw earlier, since one only considers 
potentially relevant facts. 

MYCIN's control structure uses an AND/OR tree, and is quite simple as AI 
programs go;  

(1) Each sub goal set up is always a generalized form of the original goal. So, if 
the sub goal is to prove the proposition that the identity of the organism is 
E. Coli, then the subgoal actually set up is to determine the identity of the 
organism. This initiates an exhaustive search on a given topic, which 
collects all of the available evidence about organisms. 

(2) Every rule relevant to the goal is used, unless one of them succeeds with 
certainty. If more than one rule suggest a conclusion about a parameter, 
such as the nature of the organism, then their results are combined. If the 
evidence about a hypothesis falls between -0.2 and +0.2, it is regarded as 
inconclusive, and the answer is treated as unknown. 

(3) If the current subgoal is a leaf node, then attempt to satisfy the goal by asking 
the user for data. Else set up the subgoal for further inference, and go to 
(1). 

The selection of therapy takes place after this diagnostic process has run its 
course. It consists of two phases: selecting candidate drugs, and then choosing a 
preferred drug, or combination of drugs, from this list. 
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Evidence Combination 

In MYCIN, two or more rules might draw conclusions about a parameter with 
different Weights of evidence. Thus one rule might conclude that the organism is 
E. Coli with a certainty of 0.8, while another might conclude from other data that it 
is E. Coli with a certainty of 0.5 or – 0.8. In the case of a certainty less than zero, 
the evidence is actually against the hypothesis. 

Let X and Y be the weights derived from the application of different rules. MYCIN 
combines these weights using the following formula to yield the single certainty 
factor. 

 
where |X| denotes the absolute value of X. 

One can see what is happening on an intuitive basis. If the two pieces of 
evidence both confirm (or disconfirm) the hypothesis, then confidence in the 
hypothesis goes up (or down). If the two pieces of evidence are in conflict, then 
the denominator dampens the effect. 

This formula can be applied more than once, if several rules draw conclusions 
about the same parameter. It is commutative, so it does not matter in what order 
weights are combined. 

IF the identity of the organism is pseudomonas 

THEN I recommend therapy from among the following drugs: 

1  CCLISTIN (.98) 

2  POLYMYXIN (.96) 

3  QENTAMICIN (.96) 

4  CARBENICILLIN (.65) 

5  SULFISOXAZOLE (.64) 

 

 A MYCIN therapy rule 

The special goal rule at the top of the AND/OR tree does not lead to a 
conclusion, but instigates actions, assuming that the conditions in the premise 
are satisfied. At this point, MYCIN's therapy rules for selecting drug treatments 
come into play; they contain sensitivities information for the various organisms 
known to the system. A sample therapy rule is given above. 

The numbers associated with the drug are the probabilities that a pseudomonas 
will be sensitive to the indicated drug according to medical statistics. The 
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preferred drug is selected from the list according to criteria, which attempts to 
screen for contra-indications of the drug and minimize the number of drugs 
administered, in addition to maximizing sensitivity. The user can go on asking for 
alternative therapies until MYCIN runs out of options, so the pronouncements of 
the program are not definitive. 

7.6 RI 

RI (sometimes also called XCON) is a program that configures DEC VAX 
systems. Its rules look like this: 

If: The most current active context is distributing massbus 
devices, and  

There is a single-port disk drive that has not been' assigned 
to a massbus, and 

 The number of devices that each massbus should support is 
known, and 

 There is a massbus that has been assigned at least 

 One disk drive and that should support additional  disk 
drives and  

The type of cable needed to connect the disk drive to the 
previous device on the massbus is known 

then 

Assign the disk drive to the massbus. 

Notice that Rl's rules, unlike MYCIN's, contain no numeric measures of certainty. 
In the task domain with which RI deals, it is possible to state exactly the correct 
thing to be done in each particular set of circumstances (although it may require 
a relatively complex set of antecedents to do so). One reason for this is that there 
exists a good deal of human expertise in this area. Another is that since RI is 
doing a design task (in contrast to the diagnosis task performed by MYCIN), it is 
not necessary to consider all possible alternatives; one good one is enough. As a 
result, probabilistic information is not necessary in RI. 

PROSPECTOR is a program that provides advice on mineral exploration. Its 
rules look like this: 

If:  Magnetite or pyrite in disseminated or vein let form is 
present 

then (2, -4) there is favourable mineralization and texture for the 
propylitic stage. 

In PROSPECTOR, each rule contains two confidence estimates. The first 
indicates the extent to which the presence of the evidence described in the 
condition part of the rule suggests the validity of the rule's conclusion. In the 
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PROSPECTOR rule shown above, the number 2 indicates that the presence of 
the evidence is mildly encouraging. The second-confidence estimate measures 
the extent to which the evidence is necessary to the validity of the conclusion, or 
stated another way, the extent to which the lack of the evidence indicates that the 
conclusion is not valid. In the example rule shown above, the number -4 indicates 
that the absence of the evidence is strongly discouraging for the conclusion. 

DESIGN ADVISOR is a system that critiques chip designs. Its rules look like: 

If   The sequential 'level count of ELEMENT is greater than 2, UNLESS 
the signal of ELEMENT is resetable 

then   Critique for poor resetability 
DEFEAT Poor resetability of ELEMENT 
due to  Sequential level count of ELEMENT greater than 2 
by  ELEMENT is directly resetable 

The DESIGN ADVISOR gives advice to a chip designer, who can accept or reject 
the advice. If the advice is rejected, then system can exploit a justification-based 
truth maintenance system to revise its model of the circuit. The first rule shown 
here says that an element should be criticized for poor resetability if its sequential 
level count is greater than two, unless its signal is currently believed to be 
resetable. Resetability is a fairly common condition, so it is mentioned explicitly in 
this first rule. But there is also a much less common condition, called direct 
resetability. The DESIGN ADVISOR does not even bother to consider that 
condition unless it gets in trouble with its advice. At that point, it can exploit the 
second of the rules shown above. Specifically, if the chip designer rejects a 
critique about resetability and if that critique was based on a high level count, 
then the system will attempt to discover (possibly by asking the designer) 
whether the element is directly resetable. If it is, then the original rule is defeated 
and the conclusion withdrawn. 

Reasoning with the Knowledge 

As these example rules have shown, expert systems exploit many of the 
representation and reasoning mechanisms that we have discussed. Because 
these programs are usually, written primarily as rule-based systems, forward 
chaining, backward chaining, or some combination of the two, is usually used. 
For example, MYCIN used backward chaining to discover what organisms were 
present; then it used forward chaining to reason from the organisms to a 
treatment regime. RI, on the other hand, used forward chaining. As the field of 
expert systems matures, more systems that exploit other kinds of reasoning 
mechanisms are being developed. The DESIGN ADVISOR is an example of 
such a system; in addition to exploiting rules, it makes extensive use of a 
justification-based truth maintenance system. 

Expert System Shells 

Initially, each expert system that was built was created from scratch, usually in 
LISP. But, after several systems had been built this way, it became clear that 
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these systems often had a lot in common. In particular, since the systems were 
constructed as a set of declarative representations (mostly rules) combined with 
an interpreter for those representations, it was possible to separate the 
interpreter from the domain-specific knowledge and thus to create a system that 
could be used to construct new expert systems by adding new knowledge 
corresponding to the new problem domain. The resulting interpreters are called 
shells. One influential example of such a shell is EMYCIN (for Empty MYCIN), 
which was derived from MYCIN. 

There are now several commercially available shells that serve as the basis for 
many of the expert systems currently being built. These shells provide much 
greater flexibility in representing knowledge and in reasoning with it than MYCIN 
did. They typically support rules, frames, truth maintenance systems, and a 
variety of other reasoning mechanisms. 

Early expert system shells provided mechanisms for knowledge representation, 
reasoning, and explanation. Later, tools for knowledge acquisition were added. 
Expert system shells needed to do something else as well. They needed to make 
it easy to integrate expert systems with other kinds of programs. Expert systems 
cannot operate in a vacuum, any more than their human counterparts can. They 
need access to corporate databases, and access to them needs to be controlled 
just as it does for other systems. They are often embedded within larger 
application programs that use primarily conventional programming techniques. 
So one of the important features that a shell must provide is an easy-to-use 
interface between an expert system that is written with the shell and a larger, 
probably more conventional, programming environment. 

7.7 Summary 

An expert system is a set of programs that manipulate encoded knowledge to 
solve problems in a specialized domain that normally requires human expertise. 
An expert system is usually built with the aid of one or more experts, who must 
be willing to spend a great deal of effort transferring their expertise to the system. 
Expert systems are complex AI programs. However, the expert systems 
knowledge must be obtained from specialists or other sources of expertise, such 
as texts, journals articles, and databases. 

Knowledge acquisition is the most important aspect of the expert system 
development. There are three basics approaches of knowledge acquisition i.e. 
interviewing expert, learning by being told & learning by observation. Knowledge 
acquisition has five stages throughout the development starting from 
identification, conceptualization, formalization through implementation & testing  

MYCIN is an expert system, which diagnoses infectious blood diseases and 
determines a recommended list of therapies for the patient. RI (sometimes also 
called XCON) is a program that configures DEC VAX systems 

7.8 Key words 

Expert System, Learning, Knowledge Acquisition, MYCIN & RI. 
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7.9 Self Assessment Questions (SAQ)  

Answer the following questions. 

1. What is expert system?  Explain the various stages of Expert System. 

2. What is knowledge Acquisition? What is its role in AI? 

3. Differentiate between RI & MYCIN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 114

Reference/Suggested Readings 
 Artificial Intelligence – E. Rich and K. Knight 

 Principles of Artificial Intelligence – Nilsson 

 Expert Systems-Paul Harmon and David King, Wiley Press. 

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe, eds., Addison 
Wesley. 

 


