
 1

Paper Code : MCA 402 Author :Om Parkash
Lesson No. 01 Vettor : Saroj
Lesson Name: Scope of Artificial Intelligence
__
Structure
1.0 Objectives
1.1 Introduction
1.2 Applications of AI
1.2.1 Games
1.2.2 Theorem Proving
1.2.3 Natural Language Processing
1.2.4 Vision and Speech Processing
1.2.5 Robotics
1.2.6 Expert Systems
1.3 AI Techniques
1.3.1 Knowledge Representation
1.3.2 Search Technique
1.4 Search Knowledge
1.5 Abstraction
1.5 Summary
1.6 Self Assessment Questions

1.0 Objective
The objective of this lesson is to provide an introduction to the definitions, techniques,
components and applications of Artificial Intelligence. Upon completion of this lesson
students should able to answer the AI problems, Techniques, and games. This lesson also
gives an overview about expert system, search knowledge and abstraction.

1.1 Introduction

Artificial Intelligence (AI) is the area of computer science focusing on creating
machines that can engage on behaviors that humans consider intelligent. The
ability to create intelligent machines has intrigued humans since ancient times,
and today with the advent of the computer and 50 years of research into AI
programming techniques, the dream of smart machines is becoming a reality.
Researchers are creating systems which can mimic human thought, understand
speech, beat the best human chess player, and countless other feats never
before possible.

What is Artificial Intelligence (AI)?
According to Elaine Rich, “Artificial Intelligence “

“Artificial Intelligence is the study of how to make computers do things at
which, at the moment, people are better”.

 2

In what way computer & Human Being are better?

Computers Human Being
1. Numerical Computation is fast 1. Numerical Computation is slow
2. Large Information Storage Area 2. Small Information Storage Area
3. Fast Repetitive Operations 3. Slow Repetitive Operations
4. Numeric Processing 5. Symbolic Processing
5.Computers are just Machine
(Performed Mechanical “Mindless”
Activities)

4. Human Being is intelligent (make
sense from environment)

Other Definitions of Artificial Intelligence

According to Avron Barr and Edward A. Feigenbaum, “ The Handbook of Artificial
Intelligence”, the goal of AI is to develop intelligent computers. Here intelligent
computers means that emulates intelligent behavior in humans.

“Artificial Intelligence is the part of computer science with designing
intelligent computer systems, that is, systems that exhibit the
characteristics we associate with intelligence in human behavior.”

Other definitions of AI are mainly concerned with symbolic processing, heuristics,
and pattern matching.

Symbolic Processing
According to Bruce Buchanan and Edward Shortliffe” Rule Based Expert
Systems” (reading MA: Addison-Wesley, 1984), p.3.
“Artificial Intelligence is that branch of computer science dealing with
symbolic, non algorithmic methods of problem solving.”

Heuristics
 According to Bruce Buchanan and Encyclopedic Britannica, heuristics as a key
element of a Artificial Intelligence:

“Artificial Intelligence is branch of computer science that deals with ways
of representing knowledge using symbols rather than numbers and with
rules-of-thumb or heuristics, methods for processing information.”

A heuristics is the “rule of thumb” that helps us to determine how to proceed.

Pattern Matching

 3

According to Brattle Research Corporation, Artificial Intelligence and Fifth
Generation Computer Technologies, focuses on definition of Artificial Intelligence
relating to pattern matching.

“In simplified terms, Artificial Intelligence works with the pattern matching
methods which attempts to describe objects, events, or processes in terms
of their qualitative features and logical and computational relationships.”

Here this definition focuses on the use of pattern matching techniques in an
attempt to discover the relationships between activities just as human do.

1.2 Application of Artificial Intelligence

1.2.1.0 Games
Game playing is a search problem Defined by
– Initial state
– Successor function
– Goal test
– Path cost / utility / payoff function

Games provide a structured task wherein success or failure can be measured
with latest effort. Game playing shares the property that people who do them well
are considered to be displaying intelligence. There are two major components of
game playing, viz., a plausible move generator, and a static evaluation function
generator. Plausible move generator is used to expand or generates only
selected moves. Static evaluation function generator, based on heuristics
generates the static evaluation function value for each & every move that is being
made.

1.2.1.1 Chess

AI-based game playing programs combine intelligence with entertainment. On
game with strong AI ties is chess. World-champion chess playing programs can
see ahead twenty plus moves in advance for each move they make. In addition,
the programs have an ability to get progressably better over time because of the
ability to learn. Chess programs do not play chess as humans do. In three
minutes, Deep Thought (a master program) considers 126 million moves, while
human chessmaster on average considers less than 2 moves. Herbert Simon
suggested that human chess masters are familiar with favorable board positions,
and the relationship with thousands of pieces in small areas. Computers on the
other hand, do not take hunches into account. The next move comes from
exhaustive searches into all moves, and the consequences of the moves based
on prior learning. Chess programs, running on Cray super computers have
attained a rating of 2600 (senior master), in the range of Gary Kasparov, the
Russian world champion.

 4

1.2.1.2 Characteristics of game playing

 “Unpredictable” opponent.
 Solution is a strategy specifying a move for every possible opponent
reply.

 Time limits.
 Unlikely to find goal, must approximate.

1.2.2 Theorem Proving

Theorem proving has the property that people who do them well are considered
to be displaying intelligence. The Logic Theorist was an early attempt to prove
mathematical theorems. It was able to prove several theorems from the Qussells
Principia Mathematica. Gelernters’ theorem prover explored another area of
mathematics: geometry. There are three types of problems in A.I. Ignorable
problems, in which solution steps can be ignored; recoverable problems in which
solution steps can be undone; irrecoverable in which solution steps cannot be
undone. Theorem proving falls into the first category i.e. it is ignorable suppose
we are trying to solve a theorem, we proceed by first proving a lemma that we
think will be useful. Eventually we realize that the lemma is not help at all. In this
case we can simply ignore that lemma, and can start from beginning.

There are two basics methods of theory proving.

 Start with the given axioms, use the rules of inference and prove the
theorem.

 Prove that the negation of the result cannot be TRUE.

1.2.3 Natural Language Processing

The utility of computers is often limited by communication difficulties. The
effective use of a computer traditionally has involved the use of a programming
language or a set of commands that you must use to communicate with the
computer. The goal of natural language processing is to enable people and
computer to communicate in a “natural “(human) language, such as a English,
rather than in a computer language.
 The field of natural language processing is divided into the two sub-fields
of:

 Natural language understanding, which investigates methods of allowing
computer to comprehend instruction given in ordinary English so that
computers can understand people more easily.

 5

 Natural language generation, which strives to have computers produce
ordinary English language so that people can understand computers more
easily.

1.2.4 Vision and Speech Processing

The focus of natural language processing is to enable computers to
communicate interactively with English words and sentences that are typed on
paper or displayed on a screen. However, the primary interactive method of
communication used by humans is not reading and writing; it is speech.
The goal of speech processing research is to allow computers to understand
human speech so that they can hear our voices and recognize the words we are
speaking. Speech recognition research seeks to advance the goal of natural
language processing by simplifying the process of interactive communication
between people and computers. It is a simple task to attach a camera to
computer so that the computer can receive visual images. It has proven to be a
far more difficult task, however, to interpret those images so that the computer
can understand exactly what it is seeing. People generally use vision as their
primary means of sensing their environment; we generally see more than we
hear, feel, smell or taste. The goal of computer vision research is to give
computers this same powerful facility for understanding their surroundings.
Currently, one of the primary uses of computer vision is in the area of robotics.

1.2.5 Robotics

A robot is an electro-mechanical device that can be programmed to perform
manual tasks. The Robotic Industries Association formally defines a robot as “a
reprogrammable multi-functional manipulator designed to move material, parts,
tools or specialized devices through variable programmed motions for the
performance of a variety of tasks.” An “intelligent” robot includes some kind of
sensory apparatus, such as a camera, that allows it to respond to changes in its
environment, rather than just to follow instructions “mindlessly.”

1.2.6 Expert System

 An expert system is a computer program designed to act as an expert in a
particular domain (area of expertise). Also known as a knowledge-based system,
an expert system typically includes a sizable knowledge base, consisting of facts
about the domain and heuristics (rules) for applying those facts. Expert system
currently is designed to assist experts, not to replace them. They have proven to
be useful in diverse areas such as computer system configuration.

 6

A ``knowledge engineer'' interviews experts in a certain domain and tries to
embody their knowledge in a computer program for carrying out some task. How
well this works depends on whether the intellectual mechanisms required for the
task are within the present state of AI. When this turned out not to be so, there
were many disappointing results. One of the first expert systems was MYCIN in
1974, which diagnosed bacterial infections of the blood and suggested
treatments. It did better than medical students or practicing doctors, provided its
limitations were observed. Namely, its ontology included bacteria, symptoms,
and treatments and did not include patients, doctors, hospitals, death, recovery,
and events occurring in time. Its interactions depended on a single patient being
considered. Since the experts consulted by the knowledge engineers knew about
patients, doctors, death, recovery, etc., it is clear that the knowledge engineers
forced what the experts told them into a predetermined framework. In the present
state of AI, this has to be true. The usefulness of current expert systems depends
on their users having common sense.

1.3 AI Techniques

There are various techniques that have evolved that can be applied to a variety
of AI tasks - these will be the focus of this course. These techniques are
concerned with how we represent, manipulate and reason with knowledge in
order to solve problems.

1.3.1 Knowledge Representation

Knowledge representation is crucial. One of the clearest results of artificial
intelligence research so far is that solving even apparently simple problems
requires lots of knowledge. Really understanding a single sentence requires
extensive knowledge both of language and of the context. For example, today's
(4th Nov) headline ``It's President Clinton'' can only be interpreted reasonably if
you know it's the day after the American elections. [Yes, these notes are a bit out
of date]. Really understanding a visual scene similarly requires knowledge of the
kinds of objects in the scene. Solving problems in a particular domain generally
requires knowledge of the objects in the domain and knowledge of how to reason
in that domain - both these types of knowledge must be represented. Knowledge
must be represented efficiently, and in a meaningful way. Efficiency is important,
as it would be impossible (or at least impractical) to explicitly represent every fact
that you might ever need. There are just so many potentially useful facts, most of
which you would never even think of. You have to be able to infer new facts from
your existing knowledge, as and when needed, and capture general abstractions,
which represent general features of sets of objects in the world.

Knowledge must be meaningfully represented so that we know how it relates
back to the real world. A knowledge representation scheme provides a mapping
from features of the world to a formal language. (The formal language will just

 7

capture certain aspects of the world, which we believe are important to our
problem - we may of course miss out crucial aspects and so fail to really solve
our problem, like ignoring friction in a mechanics problem). Anyway, when we
manipulate that formal language using a computer we want to make sure that we
still have meaningful expressions, which can be mapped back to the real world.
This is what we mean when we talk about the semantics of representation
languages.

1.3.2 Search

Another crucial general technique required when writing AI programs is search.
Often there is no direct way to find a solution to some problem. However, you do
know how to generate possibilities. For example, in solving a puzzle you might
know all the possible moves, but not the sequence that would lead to a solution.
When working out how to get somewhere you might know all the
roads/buses/trains, just not the best route to get you to your destination quickly.
Developing good ways to search through these possibilities for a good solution is
therefore vital. Brute force techniques, where you generate and try out every
possible solution may work, but are often very inefficient, as there are just too
many possibilities to try. Heuristic techniques are often better, where you only try
the options, which you think (based on your current best guess) are most likely to
lead to a good solution.

1.4 Search Knowledge

In order to solve the complex problems encountered in artificial intelligence, one
needs both a large amount of knowledge and some mechanisms for
manipulating that knowledge to create solutions to new problems. That is if we
have knowledge that it is sufficient to solve a problem, we have to search our
goal in that knowledge. To search a knowledge base efficiently, it is necessary to
represent the knowledge base in a systematic way so that it can be searched
easily. Knowledge searching is a basic problem in Artificial Intelligence. The
knowledge can be represented either in the form of facts or in some formalism. A
major concept is that while intelligent programs recognize search, search is
computationally intractable unless it is constrained by knowledge about the
world. In large knowledge bases that contain thousands of rules, the intractability
of search is an overriding concern. When there are many possible paths of
reasoning, it is clear that fruitless ones not be pursued. Knowledge about path
most likely to lead quickly to a goal state is often called search control
knowledge.

1.5 Abstraction

Abstraction a mental facility that permits humans to view real-world problems
with varying degrees of details depending on the current context of the problem.
Abstraction means to hide the details of something. For example, if we want to
compute the square root of a number then we simply call the function sort in C.

 8

We do not need to know the implementation details of this function. Early
attempts to do this involved the use of macro-operators, in which large operators
we built from smaller one’s. But in this approach, no details were eliminated from
actual description of the operators. A better approach was developed in the
ABSTRIPS system, which actually planned in a hierarchy of abstraction spaces,
in each of which preconditions at a lower level of abstraction, was ignored.

1.6 Summary

In this chapter, we have defined AI, other definitions of AI & terms closely related
to the field. Artificial Intelligence (AI) is the part of computer science concerned
with designing intelligent computer systems, that is, systems that exhibit the
characteristics. We associate with intelligence in human behavior, other definition
of AI are concerned with symbolic processing, heuristics, and pattern matching.
Artificial intelligence problems appear to have very little in common except that
they are hard. Areas of AI research have been evolving continually. However, as
more people identify research-taking place in a particular area as AI, that are will
tend to remain a part of AI. This could result in a more static definition of Artificial
Intelligence. Currently, the most well known area of AI research is expert system,
where programs include expert level knowledge of a particular field in order to
assist experts in that field. Artificial Intelligence is best understood as an
evolution rather than a revolution, some of popular application areas of AI include
games, theorem proving, natural language processing, vision, speech
processing, and robotics.

1.7 Key Words

Artificial Intelligence (AI), Games, Theorem Proving, Vision and Processing,
Natural Language Processing, Robotics, Expert System, Search Knowledge.

 9

1.8 Self Assessment Questions (SAQ)

Q1. A key element of AI is a/an _________, which is a “rule of thumb”.
 a. Heuristics
 b. Cognition
 c. Algorithm
 d. Digiton

Q2. One definition of AI focuses on problem solving methods that process:

a. Numbers
b. Symbols
c. Actions
d. Algorithms

Q3 Intelligent planning programs may be of speed value to managers with
 ________ Responsibilities.

a. Programming
b. Customer source
c. Personal administration
d. Decision making

Q4. What is AI? Explain different definition of AI with different application of AI.

Q5. Write short note on the following: -

a. Robotics
b. Expert system
c. Natural Language Processing
d. Vision of Speech Processing

 10

Reference/Suggested Reading

 Foundations of Artificial Intelligence and Expert System - V S
Janakiraman, K Sarukesi, & P Gopalakrishanan, Macmillan Series.

 Artificial Intelligence – E. Rich and K. Knight

 Principles of Artificial Intelligence – Nilsson

 Expert Systems-Paul Harmon and David King, Wiley Press.

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe,
eds., Addison Wesley.

 Introduction to Artificial Intelligence and Expert System- Dan W. Patterson,
PHI, Feb., 2003.

 11

Paper Code : MCA 402 Author :Om Parkash
Lesson No. 02 Vettor : Saroj
Lesson Name: Problem Solving

Structure
2.0 Objectives
2.1 Defining state space of the problem
2.2 Production Systems
2.3 Search Space Control
2.4 Breadth First Search
2.5 Depth First Search
2.6 Heuristic Search Techniques
2.7 Hill Climbing
2.8 Best First Search
2.9 Branch and Bound
2.10 Problem Reduction
2.11 Constraints Satisfaction
2.12 Means End Analysis
2.13 Summary
2.14 Self Assessment Questions
2.0 Objective
The objective of this lesson is to provide an overview of problem representation
techniques, production system, search space control and hill climbing. This lesson also
gives in depth knowledge about the searching techniques. After completion of this lesson,
students are able to tackle the problems related to problem representation, production
system and searching techniques.

2.1 Introduction

Before a solution can be found, the prime condition is that the problem must be
very precisely defined. By defining it properly, one can convert it into the real
workable states that are really understood. These states are operated upon by a
set of operators and the decision of which operator to be applied, when and
where is dictated by the overall control strategy.

Problem must be analysed. Important features land up having an immense
impact on the appropriateness of various possible techniques for solving the
problem.

 12

Out of the available solutions choose the best problem-solving technique(s) and
apply the same to the particular problem.

2.2 Defining state space of the problem

A set of all possible states for a given problem is known as state space of the
problem. Representation of states is highly beneficial in AI because they provide
all possible states, operations and the goals. If the entire sets of possible states
are given, it is possible to trace the path from the initial state to the goal state and
identify the sequence of operators necessary for doing it.

Example: Problem statement "Play chess."

To discuss state space problem, let us take an example of “play chess”. Inspite
of the fact that there are a many people to whom we could say that and
reasonably expect that they will do as we intended, as our request now stands its
quite an incomplete statement of the problem we want solved. To build a
program that could "Play chess," first of all we have to specify the initial position
of the chessboard, any and every rule that defines the legal move, and the board
positions that represent a win for either of the sides. We must also make explicit
the previously implicit goal of not only playing a legal game of chess but also goal
towards winning the game.

Figure 2.1: One Legal Chess Move

Its quite easy to provide an acceptable complete problem description for the
problem "Play chess,” The initial position can be described as an 8-by-8 array

 13

where each position contains a symbol standing for the appropriate piece in the
official chess opening position. Our goal can be defined as any board position in
which either the opponent does not have a legal move or opponent’s king is
under attack. The path for getting the goal state from an initial state is provided
by the legal moves. Legal moves are described easily as a set of rules consisting
of two parts: a left side that serves as a pattern to be matched against the current
board position and a right side that describes the change to be made to the
board position to reflect the move. There are several ways in which these rules
can be written. For example, we could write a rule such as that shown in Figure
2.1.

In case we write rules like the one above, we have to write a very large number
of them since there has to be a separate rule for each of the roughly 10120
possible board positions. Using so many rules poses two serious practical
difficulties:

• We will not be able to get a complete set of rules. If at all we manage then
it is likely to take too long and will certainly be consisting of mistakes.

• Any program will not be able to handle these many rules. Although a
hashing scheme could be used to find the relevant rules for each move
fairly quickly, just storing that many rules poses serious difficulties.

One way to reduce such problems could possibly be that write the rules
describing the legal moves in as general a way as possible. To achieve this we
may introduce some convenient notation for describing patterns and
substitutions. For example, the rule described in Figure 2.1, as well as many like
it, could be written as shown in Figure 2.2. In general, the more efficiently we can
describe the rules we need, the less work we will have to do to provide them and
the more efficient the program that uses them can be.

Figure 2.2: Another Way to Describe Chess Moves

Problem of playing chess has just been described as a problem of moving
around, in a state space, where a legal position represents a state of the board.
Then we play chess by starting at an initial state, making use of rules to move
from one state to another, and making an effort to end up in one of a set of final
states. This state space representation seems natural for chess because the set
of states, which corresponds to the set of board positions, is artificial and well
organized. This same kind of representation is also useful for naturally occurring,

 14

less well-structured problems, although we may need to use more complex
structures than a matrix to describe an individual state. The basis of most of the
AI methods we discuss here is formed by the State Space representations. Its
structure corresponds to the structure of problem solving in two important ways:

 Representation allows for a formal definition of a problem using a set of
permissible operations as the need to convert some given situation into
some desired situation.

 We are free to define the process of solving a particular problem as a
combination of known techniques, each of which are represented as a rule
defining a single step in the space, and search, the general technique of
exploring the space to try to find some path from the current state to a
goal state.

Search is one of the important processes the solution of hard problems for which
none of the direct techniques is available.

2.3 Production Systems

A production system is a system that adapts a system with production rules.

 A production system consists of:

• A set of rules, each consisting of a left side and a right hand side. Left hand
side or pattern determines the applicability of the rule and a right side
describes the operation to be performed if the rule is applied.

• One or more knowledge/databases that contain whatever information is
appropriate for the particular task. Some parts of the database may be
permanent, while other parts of it may pertain only to the solution of the
current problem. The information in these databases may be structured in any
appropriate way.

• A control strategy that specifies the order in which the rules will be compared
to the database and a way of resolving the conflicts that arise when several
rules match at once.

• A rule applier.

Production System also encompasses a family of general production system
interpreters, including:

• Basic production system languages, such as OPS5 and ACT*

• More complex, often hybrid systems called expert system shells, which
provide complete (relatively speaking) environments for the construction of
knowledge-based expert systems.

 15

• General problem-solving architectures like SOAR [Laird et al., 1987], a
system based on a specific set of cognitively motivated hypotheses about the
nature of problem solving.

Above systems provide the overall architecture of a production system and allow
the programmer to write rules that define particular problems to be solved.

In order to solve a problem, firstly we must reduce it to one for which a precise
statement can be given. This is done by defining the problem's state space,
which includes the start and goal states and a set of operators for moving
around in that space. The problem can then be solved by searching for a path
through the space from an initial state to a goal state. The process of solving
the problem can usefully be modelled as a production system. In production
system we have to choose the appropriate control structure so that the search
can be as efficient as possible.

2.4 Search Space Control

The next step is to decide which rule to apply next during the process of
searching for a solution to a problem. This decision is critical since often more
than one rule (and sometimes fewer than one rule) will have its left side match
the current state. We can clearly see what a crucial impact they will make on how
quickly, and even whether, a problem is finally solved. There are mainly two
requirements to of a good control strategy. These are:

1. A good control strategy must cause motion

2. A good control strategy must be systematic: A control strategy is not
systematic; we may explore a particular useless sequence of operators
several times before we finally find a solution. The requirement that a
control strategy be systematic corresponds to the need for global motion
(over the course of several steps) as well as for local motion (over the
course of a single step). One systematic control strategy for the water jug
problem is the following. Construct a tree with the initial state as its root.
Generate all the offspring of the root by applying each of the applicable
rules to the initial state.

Now, for each leaf node, generate all its successors by applying all the rules that
are appropriate. Continuing this process until some rule produces a goal state.
This process, called breadth-first search, can be described precisely in the
breadth first search algorithm.

2.5 Depth First Search

The searching process in AI can be broadly classified into two major types.
Viz. Brute Force Search and Heuristics Search. Brute Force Search do not
have any domain specific knowledge. All they need is initial state, the final

 16

state and a set of legal operators. Depth-First Search is one the important
technique of Brute Force Search.

In Depth-First Search, search begins by expanding the initial node, i.e., by
using an operator, generate all successors of the initial node and test them.
Let us discuss the working of DFS with the help of the algorithm given below.

Algorithm for Depth-First Search

1. Put the initial node on the list of START.

2. If (START is empty) or (START = GOAL) terminate search.

3. Remove the first node from the list of START. Call this node d.

4. If (d = GOAL) terminate search with success.

5. Else if node d has successors, generate all of them and add them at the
beginning of START.

6. Go to step 2.

In DFS the time complexity and space complexity are two important factors
that must be considered. As the algorithm and Fig. 2.3 shows, a goal would
be reached early if it is on the left hand side of the tree.

Root

GoalD E F

A

H

C

B

I J

Fig: 2.3 Search tree for Depth-first search

 17

The major drawback of Depth-First Search is the determination of the depth
(cut-off depth) until which the search has to proceed. The value of cut-off
depth is essential because otherwise the search will go on and on.

2.5 Breadth First Search

Breadth first search is also like depth first search. Here searching progresses
level by level. Unlike depth first search, which goes deep into the tree. An
operator employed to generate all possible children of a node. Breadth first
search being the brute force search generates all the nodes for identifying the
goal.

Algorithm for Breadth-First Search

1. Put the initial node on the list of START.

2. If (START is empty) or (START = GOAL) terminate search.

3. Remove the first node from the list of START. Call this node d.

4. If (d = GOAL) terminate search with success.

5. Else if node d has successors, generate all of them and add them at the
tail of START.

6. Go to step 2.

Fig. 2.4 gives the search tree generated by a breadth-first search.

 18

Root

GoalD E F

A

H

C

B

I J

 Fig: 2.4 Search tree for Breadth-first search

Similar to brute force search two important factors time-complexity and space-
complexity have to be considered here also.

The major problems of this search procedure are: -

1. Amount of time needed to generate all the nodes is considerable because
of the time complexity.

2. Memory constraint is also a major hurdle because of space complexity.

3. The Searching process remembers all unwanted nodes, which is of no
practical use for the search.

2.6 Heuristic Search Techniques

The idea of a "heuristic" is a technique, which sometimes will work, but not
always. It is sort of like a rule of thumb. Most of what we do in our daily lives
involves heuristic solutions to problems. Heuristics are the approximations used
to minimize the searching process.

The basic idea of heuristic search is that, rather than trying all possible search
paths, you try and focus on paths that seem to be getting you nearer your goal

 19

state. Of course, you generally can't be sure that you are really near your goal
state - it could be that you'll have to take some amazingly complicated and
circuitous sequence of steps to get there. But we might be able to have a good
guess. Heuristics are used to help us make that guess.

To use heuristic search you need an evaluation function (Heuristic function) that
scores a node in the search tree according to how close to the target/goal state it
seems to be. This will just be a guess, but it should still be useful. For example,
for finding a route between two towns a possible evaluation function might be a
``as the crow flies'' distance between the town being considered and the target
town. It may turn out that this does not accurately reflect the actual (by road)
distance - maybe there aren't any good roads from this town to your target town.
However, it provides a quick way of guessing that helps in the search.

Basically heuristic function guides the search process in the most profitable
direction by suggesting which path to follow first when more than one is
available. The more accurately the heuristic function estimates the true merits of
each node in the search tree (or graph), the more direct the solution process. In
the extreme, the heuristic function would be so good that essentially no search
would be required. The system would move directly to a solution. But for many
problems, the cost of computing the value of such a function would outweigh the
effort saved in the search process. After all, it would be possible to compute a
perfect heuristic function by doing a complete search from the node in question
and determining whether it leads to a good solution. Usually there is a trade-off
between the cost of evaluating a heuristic function and the savings in search time
that the function provides.

There the following algorithms make use of heuristic evaluation function.

 Hill Climbing

 Best First Search

 Constraints Satisfaction

2.7 Hill Climbing

Hill climbing uses a simple heuristic function viz., the amount of distance the
node is from the goal. This algorithm is also called Discrete Optimization
Algorithm. Let us discuss the steps involved in the process of Hill Climbing
with the help of an algorithm.

Algorithm for Hill Climbing Search

1. Put the initial node on the list of START.

2. If (START is empty) or (STRAT = GOAL) terminate search.

3. Remove the first node from the list of START. Call this node d.

 20

4. If (d = GOAL) terminate search with success.

5. Else if node d has successors, generate all of them. Find out how far they
are from the goal node. Sort them by the remaining distance from the goal
and add them to the beginning of START.

6. Go to step 2.

The algorithm for hill-climbing Fig. 2.5

Root

Goal

E F

A
C

B

D

8
3

7

2.722.7

Fig. 2.5 Search tree for hill-climbing procedure

 21

Problems of Hill Climbing Technique

Local Maximum: A state that is better than all its neighbours but no so when
compared to the states that are farther away.

Plateau: A flat area of search space, in which all the neighbours have the
same value.

Ridge: Described as a long and narrow stretch of elevated ground or narrow
elevation or raised part running along or across a surface by the Oxford
English Dictionary.

Solution to the problems of Hill Climbing Technique

 Backtracking for local maximum: Backtracking helps in undoing what
has been done so far and permits to try a totally different path to attain
the global peak.

 A big jump is the solution to escape from the plateau.

 Trying different paths at the same time is the solution for circumventing
ridges.

2.8 Best First Search

Best first search is a little like hill climbing, in that it uses an evaluation
function and always chooses the next node to be that with the best score. The
heuristic function used here (evaluation function) is an indicator of how far the
node is from the goal node. Goal nodes have an evaluation function value of
zero.

Algorithm for Best First Search

1. Put the initial node on the list of START.

2. If (START is empty) or (STRAT = GOAL) terminate search.

3. Remove the first node from the list of START. Call this node d.

4. If (d = GOAL) terminate search with success.

5. Else if node d has successors, generate all of them. Find out how far they
are from the goal node. Sort all the children generated so far by the
remaining distance from the goal.

6. Name this list as START 1.

7. Replace START with START 1.

8. Go to step 2.

 22

The path found by best first search are likely to give solutions faster because
it expands a node that seems closer to the goal.

2.9 Branch and Bound

Branch and Bound search technique applies to a problem having a graph search
space where more than one alternate path may exist between two nodes. An
algorithm for the branch and bound search technique uses a data structure to
hold partial paths developed during the search are as follows.

Place the start node of zero path length on the queue.

1. Until the queue is empty or a goal node has been found: (a) determine if the
first path in the queue contains a goal node, (b) if the first path contains a
goal node exit with success, (c) if the first path does not contain a goal node,
remove the path from the queue and form new paths by extending the
removed path by one step, (d) compute the cost of the new paths and add
them to the queue, (e) sort the paths on the queue with lowest-cost paths in
front.

2. Otherwise, exit with failure.

2.10 Problem Reduction

In problem reduction, a complex problem is broken down or decomposed into
a set of primitive sub problem; solutions for these primitive sub-problems are
easily obtained. The solutions for all the sub problems collectively give the
solution for the complex problem.

2.11 Constraints Satisfaction

Constraint satisfaction is a search procedure that operates in a space of
constraint sets. The initial state contains the constraints that are originally given
in the problem description. A goal state is any state that has been constrained
“enough” where "enough” must be defined for each problem. For example, for
crypt arithmetic, enough means that each letter has been assigned a unique
numeric value.

Constraint satisfaction is a two-step process: -

1. Constraint are discovered and propagated as far as possible throughout
the system. Then, if there is still not a solution, search begins. A guess
about something is made and added as a new constraint. Propagation can
then occur with this new constraint, and so forth. Propagation arises from
the fact that there are usually dependencies among the constraints. These
dependencies occur because many constraints involve more than one

 23

object and many objects participate in more than one constraint. So, for
example, assume we start with one constraint, N=E + 1. Then. if we added
the constraint N = 3, we could propagate that to get a stronger constraint
on E, namely l that E = 2. Constraint propagation also arises from the
presence of inference rules that allow additional constraints to be inferred
from the ones that are given. Constraint propagation terminates for one of
two reasons. First, a contradiction may be detected. If this happens, then
there is no solution consistent with all the known constraints. If the
contradiction involves only those constraints that were given as part of the
problem specification (as opposed to ones that were guessed during
problem solving), then no solution exists. The second possible reason for
termination is that the propagation has run out of steam and there are no
further changes that can be made on the basis of current knowledge. If
this happens and a solution has not yet been adequately specified, then
search is necessary to get the process moving again.

2. After we have achieved all that we proceed to the second step where
some hypothesis about a way to strengthen the constraints must be made.
In the case of the crypt arithmetic problem, for example, this usually
means guessing a particular value for some letter. Once this has been
done, constraint propagation can begin again from this new state. If a
solution is found, it can be reported. If still guesses are required, they can
be made. If a contradiction is detected, then backtracking can be used to
try a different guess and proceed with it.

2.12 Means End Analysis

The means-ends analysis process centers around the detection of differences
between the current state and the goal state. The means-ends analysis process
can then be applied recursively to the sub problem of the main problem. In order
to focus the system's attention on the big problems first, the differences can be
assigned priority levels. Differences of higher priority can then be considered
before lower priority ones.

Means-ends analysis relies on a set of rules that can transform one problem
state into another. These rules are usually not represented with complete state
descriptions on each side.

Algorithm: Means-Ends Analysis (CURRENT, GOAL)

1. Compare CURRENT with GOAL. If there are no differences between them
then return.

2. Otherwise, select the most important difference and reduce it doing the
following until success or failure is signaled:

 24

a. Select an as yet untried operator O that is applicable to the current
difference. If there are no such operators, then signal failure.

b. Attempt to apply O to CURRENT. Generate descriptions of two states:
O-START, a state in which O's preconditions are satisfied and O-
RESULT, the state that would result if O were applied in O-START.

c. If (FIRST-PART MEA (CURRENT, O-START)) and (LAST-PART
MEA (O-RESULT, GOAL)) are successful, then signal success and
return the result of concatenating FIRST-PART,O, and LAST-PART.

In particular, the order in which differences are considered can be critical. It is
important that significant differences be reduced before less critical ones. If this is
not done, a great deal of effort may be wasted on situations that take care of
themselves once the main parts of the problem are solved. The simple process
we have described is usually not adequate for solving complex problems. The
number of permutations of differences may get too large; Working on one
difference may interfere with the plan for reducing another.

2.13 Summary

In this lesson we have discussed the most common methods of problem
representation in AI are:

 State Space Representation.
 Problem Reduction.

State Space Representation is highly beneficial in AI because they provide all
possible states, operators and the goals. In case of problem reduction, a complex
problem is broken down or decomposed into a set of primitive sub problem;
solutions for these primitive sub-problems are easily obtained.

Search is a characteristic of almost all AI problems. Search strategies can be
compared by their time and space complexities. It is important to determine the
complexity of a given strategy before investing too much programming effort,
since many search problems are in traceable.

In case of brute search (Uninformed Search or Blind Search) , nodes in the
space are explored mechanically until a goal is found, a time limit has been
reached, or failure occurs. Examples of brute force search are breadth first
search and death first search. In case of Heuristic Search (Informed Search) cost
or another function is used to select the most promising path at each point in the
search. Heuristics evolution functions are used in the best first strategy to find
good solution paths.

 25

A solution is not always guaranteed with this type of search, but in most practical
cases, good or acceptable solutions are often found.

2.14 Key words

State Space Representation, Problem Reduction, Depth First Search, Breadth
First Search, Hill Climbing, Branch & Bound, Best First Search, Constraints
Satisfactions & Mean End Analysis.

2.15 Self-assessment questions

Answer the following questions: -

Q1. Discuss various types of problem representation. Also discuss their
advantages & disadvantages.

Q2. What are various heuristics search techniques? Explain how they are
different from the search techniques.

Q3. What do you understand by uniformed search? What are its advantages &
disadvantages over informed search? What is breadth first search better than
depth first search better than depth first and vice-versa? Explain.

Q4. Differentiate between following: -

(a) Local maximum and plateau in hill climbing search.
(b) Depth first search and breadth first search.

Q5. Write sort notes on the following: -

(a) Production System
(b) Constraints Satisfaction
(c) Mean End Analysis

Reference/Suggested Reading

 Foundations of Artificial Intelligence and Expert System - V S
Janakiraman, K Sarukesi, & P Gopalakrishanan, Macmillan Series.

 Artificial Intelligence – E. Rich and K. Knight

 Principles of Artificial Intelligence – Nilsson

 Expert Systems-Paul Harmon and David King, Wiley Press.

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe,
eds., Addison Wesley.

 Introduction to Artificial Intelligence and Expert System- Dan W. Patterson,
PHI, Feb., 2003.

 26

Paper Code : MCA 402 Author :Om Parkash
Lesson No. 03 Vettor : Saroj
Lesson Name: Knowledge Representation
__

Structure
3.0 Objectives
3.1 The Role of Logic
3.2 Predicate Logic
3.3 Unification Algorithm
3.4 Modus Pones
3.5 Resolution
3.6 Dependency Directed Backtracking
3.7 Summary
3.8 Self Assessment Questions

3.0 Objective
This lesson is providing an introduction about logic and knowledge representation
techniques. The logic is used to represent knowledge. Various knowledge representation
schemes are also discussed in detail. Upon the completion of this lesson students are able
to learn how to represent AI problem(s) with the help of knowledge representation
schemes.

3.1 The Role of Logic

The use of symbolic logic to represent knowledge is not new in that it predates
the modern computer by a number of decades. Logic is a formal method of
reasoning. Many concepts, which can be verbalized, can be translated into
symbolic representations, which closely approximate the meaning of these
concepts. These symbolic structures can then be manipulated in programs to
deduce various facts, to carry out a form of automated reasoning. Logic can be
defined as a scientific study of the process of reasoning and the system of rules
and procedures that help in the reasoning process. Basically the logic process
takes in some information (called premises) and procedures some outputs
(called conclusions). Today, First Order Logic (FOPL) or Predicate Logic as it is
sometimes called, has assumed one of the most important roles in AI for the
representation of knowledge. It is commonly used in program designs and widely
discussed in the literature. To understand many of the AI articles and research
papers requires comprehensive knowledge of FOPL as well as some related
logics.

3.2 Predicate Logic or First Order Logic

A familiarity with Predicate Logic is important to the student of AI for several
reasons.

 27

 Logic offers the only formal approach to reasoning that has a sound
theoretical foundation. It is important in our attempts to mechanize or
automate the reasoning process in that inference should be correct and
logically sound.

 The structure of FOPL is flexible enough to permit the accurate
representation of natural language reasonably well. This is too important
in AI system since most knowledge must originate with and be consumed
by humans.

 FOPL is widely accepted by the workers in the AI field as one of the most
useful representation methods.

The propositional logic is not powerful enough to represent all types of assertions
that are used in computer science and mathematics, or to express certain types
of relationship between propositions such as equivalence.

For example, the assertion "x is greater than 1", where x is a variable, is not
a proposition because you can not tell whether it is true or false unless you
know the value of x. Thus the prepositional logic cannot deal with such
sentences. However, such assertions appear quite often in mathematics
and we want to do inferencing on those assertions.

Also the pattern involved in the following logical equivalences cannot be
captured by the propositional logic:

"Not all birds fly" is equivalent to "Some birds don't fly".
"Not all integers are even" is equivalent to "Some integers are not even".
"Not all cars are expensive" is equivalent to "Some cars are not expensive",

Each of those propositions is treated independently of the others in propositional
logic. For example, if P represents "Not all birds fly" and Q represents "Some
integers are not even", then there is no mechanism in propositional logic to find
out the P is equivalent to Q. Hence to be used in inferencing, each of these
equivalences must be listed individually rather than dealing with a general
formula that covers all these equivalences collectively and instantiating it as they
become necessary, if only propositional logic is used.
Thus we need more powerful logic to deal with these and other problems. The
predicate logic is one of such logic and it addresses these issues among others.

3.3 Unification Algorithm

Unification algorithm is the process of identifying unifiers. Unifier is a substitution
that makes two clauses resolvable. The unification algorithm tries to find out the
Most General unifier (MGU) between a given set of atomic formulae.

In prepositional logic, it is easy to determine that two literals cannot both be true
at the, same time. Simply look for L and ¬L. In predicate logic, this matching
process is more complicated since the arguments of the predicates must be

 28

considered. For example man (John) and ¬man (John) is a contradiction, while
man(John) and ¬man(Spot) is not. Thus, in order to determine contradictions, we
need a matching procedure that compares two literals are discovers whether
there exists a set of substitutions that makes, them identical. There is a
straightforward recursive procedure, called the unification algorithm that does just
this.

The basic idea of unification is very simple. To attempt to unify two literals, we
first check if their initial predicate symbols are the same. If so, we can proceed.
Otherwise, there is no way they can be unified, regardless of their arguments.
For example, the two literals

– tryassassinate(Marcus, Caesar)

– hate(Marcus, Caesar)

cannot be unified. If the predicate symbols match, then we must check the
arguments, one pair at a time. If the first matches, we can continue with the
second, and so on. To test each argument pair, we can simply call the unification
procedure recursively. The matching rules are simple. Different constants or
predicates cannot match; identical ones can. A variable can match another
variable, any constant, or a predicate expression, with the restriction that the
predicate expression must not contain any instances of the variable being
matched.

The only complication in this procedure is that we must find a single, consistent
substitution for the entire literal, not separate ones for each piece of it. To do this,
we must take each substitution that we find and apply it to the remainder of the
literals before we continue trying to unify them. For example, suppose we want to
unify the expressions

P(x, x)

P(y, z)

The two instances of P match fine. Next we compare x and y, and decide that if
we substitute y for x, they could match. We will write that substitution as

 y/x

But now, if we simply continue and match x and z, we produce the substitution z/
x.

But we cannot substitute both y and z for x, so we have not produced a
consistent substitution. What we need to do after finding the first substitution y/x
is to make that substitution throughout the literals, giving

P(y,y)

P(y, z)

 29

Now we can attempt to unify arguments y and z, which succeeds with the
substitution z/y. The entire unification process has now succeeded with a
substitution that is the composition of the two substitutions we found. We write
the composition as

 (z/y)(y/x)

following standard notation for function composition. In general, the substitution
(a1/a2, a3/a4,….)(b1/b2, b3/b4,...)... means to apply all the substitutions of the
right-most list, then take the result and apply all the ones of the next list, and so
forth, until all substitutions have been applied.

The object of the unification procedure is to discover at least one substitution that
causes two literals to match. Usually, if there is one such substitution there are
many. For example, the literals

hate(x,y)

hate(Marcus,z)

could be unified with any of the following substitutions:

(Marcus/x,z/y)

(Marcus/x,y/z)

(Marcus/x,Caesar/y,Caesar/z)

(Marcus/x,Polonius/y,Polonius/z)

The first two of these are equivalent except for lexical variation. But the second
two, although they produce a match, also produce a substitution that is more
restrictive than absolutely necessary for the match. Because the final substitution
produced by the, unification process will be used by the resolution procedure, it is
useful to generate the most general unifier possible. The algorithm shown below
will do that.

Having explained the operation of the unification algorithm, we can now state it
concisely. We describe a procedure Unify(L1, L2), which returns as its value a list
representing the composition of the substitutions that were performed during the
match. The empty list, NIL, indicates that a match was found without any
substitutions. The list consisting of the single value FAIL indicates that the
unification procedure failed.

Algorithm: Unify (L1, L2)

1. If L1 or L2 are both variables or constants, then:

a. If L1 and L2 are identical, then return NIL.

b. Else if L1 is a variable, then if L1 occurs in L2 then return {FAIL}, else
return (L2/L1).

 30

c. Else if L2 is a variable then if L2 occurs in L1 then return {FAIL}, else ,
return (L1/L2).

d. Else return {FAIL}.

2. If the initial predicate symbols in L1 andL2 are not identical, then return
{FAIL}.

3. If L1 and L2 have a different number of arguments, then return {FAIL}.

4. Set SUBST to NIL. (At the end of this procedure, SUBST will contain all the
substitutions used to unify L1 and L2.)

5. For i 1 to number of arguments in L1:

a. Call Unify with the ith argument of L1 and the ith argument of L2, putting
result in S.

b. If S contains FAIL then return {FAIL}.

c. If S is not equal to NIL then:

i. Apply S to the remainder of both L1 and L2.

ii. SUBST:= APPEND(S, SUBST)

6. Return SUBST.

The only part of this algorithm that we have not yet discussed is the check in
steps 1(b) and l(c) to make sure that an expression involving a given variable is
not unified Y with that variable. Suppose we were attempting to unify the
expressions

 f(x, x)

f(g(x), g(x))

If we accepted g(x) as a substitution for x, then we would have to substitute it for
x in the remainder of the expressions. But this leads to infinite recursion since it
will never be possible to eliminate x.
Unification has deep mathematical roots and is a useful operation in many AI
programs, or example, theorem proverbs and natural language parsers. As a
result, efficient data structures and algorithms for unification have been
developed.

3.4 Modus Pones

Modus Pones is a property of propositions that is useful in resolution. It can be
represented as follows:

QQPandP ⇒→

Where P and Q are two clauses.

 31

 For example
 Given: (Joe is a father)
 And: (Joe is father) → (Joe has child)
Conclude: (Joe has a child)

3.5 Resolution

Robinson in 1965 introduced the resolution principle, which can be directly
applied to any set of clauses. The principal is

“Given any two clauses A and B, if there is a literal P1 in A which has a
complementary literal P2 in B, delete P1 & P2 from A and B and construct a
disjunction of the remaining clauses. The clause so constructed is called
resolvent of A and B.”

For example, consider the following clauses

A: P V Q V R

B: `p V Q V R

C: `Q V R

Clause A has the literal P which is complementary to `P in B. Hence both of
them deleted and a resolvent (disjunction of A and B after the complementary
clauses are removed) is generated. That resolvent has again a literal Q whose
negation is available in C. Hence resolving those two, one has the final
resolvent.

A: P V Q V R (given in the problem)

B: `p V Q V (given in the problem)

D: Q V R (resolvent of A and B)

C: `Q V R (given in the problem)

E: R (resolvent of C and D)

3.6 Dependency Directed Backtracking

If we take a depth-first approach to nonmonotonic reasoning, then the following
scenario is likely to occur often: We need to know a fact, F, which cannot be
derived monotonically from what we already know, but which can be derived by
making some assumption A which seems plausible. So we make assumption A,
derive F, and then derive some additional facts G and H from F. We later derive
some other facts M and N, but they are completely independent of A and F. A
little while later, a new fact comes in that invalidates A. We need to rescind our
proof of F, and also our proofs of G and H since they depended on F. But what

 32

about M and N? They didn’t depend on F, so there is no logical need to invalidate
them. But if we use a conventional backtracking scheme, we have to back up
past conclusions in the other in which we derived them. So we have to backup
past M and N, thus undoing them, in order to get back to F, G, H and A. To get
around this problem, we need a slightly different notion of backtracking, one that
is based on logical dependencies rather than the chronological order in which
decisions were made. We call this new method dependency-directed
backtracking in contrast to chronological backtracking, which we have been using
up until now.

Before we go into detail on how dependency-directed backtracking works, it is
worth pointing out that although one of the big motivations for it is in handling
nonmonotonic reasoning, it turns out to be useful for conventional search
programs as well. This is not too surprising when you consider, what any depth-
first search program does is to “make a guess” at something, thus creating a
branch in the search space. If that branch eventually dies out, then we know that
at least one guess that led to it must be wrong. It could be any guess along the
branch. In chronological backtracking we have to assume it was the most recent
guess ad back up there to try an alternative. Sometimes, though, we have
additional information that tells us which guess caused the problem. We’d like to
retract only that guess and the work that explicitly depended on it, leaving
everything else that has happened in the meantime intact. This is exactly what
dependency-directed backtracking does.

As an example, suppose we want to build a program that generates a solution to
a fairly simple problem, such as finding a time at which three busy people can all
attend a meeting. One way to solve such a problem is first to make an
assumption that the meeting will be held on some particular day, say
Wednesday, add to the database an assertion to that effect, suitably tagged as
an assumption, and then proceed to find a time, checking along the way for any
inconsistencies in people’s schedules. If a conflict arises, the statement
representing the assumption must be discarded and replaced by another,
hopefully noncontradictory, one. But, of course, any statements that have been
generated along the way that depend on the now-discarded assumption must
also be discarded.

Of course, this kind of situation can be handled by a straightforward tree search
with chronological backtracking. All assumptions, as well as the inferences drawn
from them, are recorded at the search node that created them. When a node is
determined to represent a contradiction, simply backtrack to the next node from
which there remain unexplored paths. The assumptions and their inferences will
disappear automatically. The drawback to this approach is illustrated in Figure
3.1, which shows part of the search tree of a program that is trying to schedule a
meeting. To do so, the program must solve a constraints satisfaction problem to
find a day and time at which none of the participants is busy and at which there is
a sufficiently large room available.

 33

In order to solve the problem, the system must try to satisfy one constraint at a
time. Initially, there is little reason to choose one alternative over another, so it
decides to schedule the meeting on Wednesday. That creates a new constraint
that must be met by the rest of the solution. The assumption that the meeting will
be held on Wednesday is stored at the node it generated. Next the program tries
to select a time at which all participants are available. Among them, they have
regularly scheduled daily meetings at all times except 2:00. So 2:00 is chosen as
the meeting time. But it would not have mattered which day was chosen. Then
the program discovers that on Wednesday there have no rooms available. So it
backtracks past the assumption that the day would be Wednesday and tries
another day, Tuesday. Now it must duplicate the chain of reasoning that led it to
choose 2:00 as the time because that reasoning was lost when it backtracked to
reduce the choice of day. This occurred even though that reasoning did not
depend in any way on the assumption that the day would be Wednesday. By
withdrawing statements based on the order which they were generated by the
search process rather than on the basis of responsibility for inconsistency, we
may waste a great deal of effort.

Figure 3.1: Nondependency-Directed Backtracking

If we want to use dependency-directed backtracking instead, so that we do not
waste this effort, then we need to do the following things:

Associate with each node one or more justifications. Each justification
corresponds to a derivation process that led to the node. (Since it is possible to
derive the same node in several different ways, we want to allow for the
possibility of multiple justifications). Each justification must contain a list of all the
nodes (facts, rules, assumptions) on which its derivation depended.

Provide a mechanism that, when given a contradiction node and its justification,
computes the “no-good” set of assumptions that underline the justification. The
no-good set is defined to be the minimal set of assumptions such that if you

 34

remove any element from the set, the justification will no longer be valid and the
inconsistent node will no longer be believed.

Provide a mechanism for considering a no-good set and choosing an assumption
to retract.

Provide a mechanism for propagating the result of retracting as assumption.
This mechanism must cause all of the justifications that depended, however
indirectly, on the retracted assumption to become invalid.

3.7 Summary

We have considered prepositional and predicate logics in this lesson as
knowledge representation schemes. We have learned that Predicate Logic
has sound theoretical foundation; it is not expressive enough for many
practical problems. FOPL, on the other provides a theoretically sound basis
and permits great latitude of expressiveness. In FOPL one can easily code
object descriptions and relations among objects as well as general assertions
about classes of similar objects.

• Modus Pones is a property of prepositions that is useful in resolution and
can be represented as QQPandP ⇒→ where P and Q are two clauses.

• Resolution produces proofs by refutation.

 Finally, rules, a subset of FOPL, were described as a popular representation
scheme.

3.8 Key Words

Predicate Logic, FOPL, Modus Ponen, Unification, Resolution & Dependency
Directed Backtracking.

3.9 Self Assessment Questions

Answer the following Questions:

Q1. What are the limitations of logic as representation scheme?

Q2. Differentiate between Propositional & Predicate Logic.

Q3. Perform resolution on the set of clauses
A: P V Q V R B: `P V R C: `Q Q: `R

Q4. Write short notes on the following:

a. Unification

b. Modus Ponen

 35

c. Directed Backtracking

d. Resolution

Reference/Suggested Reading

 Foundations of Artificial Intelligence and Expert System - V S
Janakiraman, K Sarukesi, & P Gopalakrishanan, Macmillan Series.

 Artificial Intelligence – E. Rich and K. Knight

 Principles of Artificial Intelligence – Nilsson

 Expert Systems-Paul Harmon and David King, Wiley Press.

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe,
eds., Addison Wesley.

 Introduction to Artificial Intelligence and Expert System- Dan W. Patterson,
PHI, Feb., 2003.

 36

Paper Code : MCA 402 Author :Om Parkash
Lesson No. 04 Vettor : Saroj
Lesson Name: Rule Based Systems
__
Structure
4.0 Objectives
4.1 Procedural vs Declarative Knowledge
4.2 Forward vs Backward Reasoning
4.3 Conflict Resolution
4.4 Forward Chaining System
4.5 Backward Chaining System
4.6 Use of No Backtrack
4.7 Summary
4.8 Self Assessment Questions

4.0 Objective
The objective of this lesson is to provide an overview of rule-based system. This lesson
discuss about procedural versus declarative knowledge. Students are come to know how
to handle the problems, related with forward and backward chaining. Upon completion of
this lesson, students are able to solve their problems using rule-based system.

4.1 Introduction

Using a set of assertions, which collectively form the ‘working memory’, and a set
of rules that specify how to act on the assertion set, a rule-based system can be
created. Rule-based systems are fairly simplistic, consisting of little more than a
set of if-then statements, but provide the basis for so-called “expert systems”
which are widely used in many fields. The concept of an expert system is this:
the knowledge of an expert is encoded into the rule set. When exposed to the
same data, the expert system AI will perform in a similar manner to the expert.

Rule-based systems are a relatively simple model that can be adapted to any
number of problems. As with any AI, a rule-based system has its strengths as
well as limitations that must be considered before deciding if it’s the right
technique to use for a given problem. Overall, rule-based systems are really only
feasible for problems for which any and all knowledge in the problem area can be
written in the form of if-then rules and for which this problem area is not large. If
there are too many rules, the system can become difficult to maintain and can
suffer a performance hit.

To create a rule-based system for a given problem, you must have (or create)
the following:

1. A set of facts to represent the initial working memory. This should be
anything relevant to the beginning state of the system.

 37

2. A set of rules. This should encompass any and all actions that should be
taken within the scope of a problem, but nothing irrelevant. The number of
rules in the system can affect its performance, so you don’t want any that
aren’t needed.

3. A condition that determines that a solution has been found or that none
exists. This is necessary to terminate some rule-based systems that find
themselves in infinite loops otherwise.

Theory of Rule-Based Systems

The rule-based system itself uses a simple technique: It starts with a rule-base,
which contains all of the appropriate knowledge encoded into If-Then rules, and a
working memory, which may or may not initially contain any data, assertions or
initially known information. The system examines all the rule conditions (IF) and
determines a subset, the conflict set, of the rules whose conditions are satisfied
based on the working memory. Of this conflict set, one of those rules is triggered
(fired). Which one is chosen is based on a conflict resolution strategy. When the
rule is fired, any actions specified in its THEN clause are carried out. These
actions can modify the working memory, the rule-base itself, or do just about
anything else the system programmer decides to include. This loop of firing rules
and performing actions continues until one of two conditions are met: there are
no more rules whose conditions are satisfied or a rule is fired whose action
specifies the program should terminate.

Which rule is chosen to fire is a function of the conflict resolution strategy. Which
strategy is chosen can be determined by the problem or it may be a matter of
preference. In any case, it is vital as it controls which of the applicable rules are

 38

fired and thus how the entire system behaves. There are several different
strategies, but here are a few of the most common:

• First Applicable: If the rules are in a specified order, firing the first
applicable one allows control over the order in which rules fire. This is the
simplest strategy and has a potential for a large problem: that of an infinite
loop on the same rule. If the working memory remains the same, as does
the rule-base, then the conditions of the first rule have not changed and it
will fire again and again. To solve this, it is a common practice to suspend
a fired rule and prevent it from re-firing until the data in working memory,
that satisfied the rule’s conditions, has changed.

• Random: Though it doesn’t provide the predictability or control of the first-
applicable strategy, it does have its advantages. For one thing, its
unpredictability is an advantage in some circumstances (such as games
for example). A random strategy simply chooses a single random rule to
fire from the conflict set. Another possibility for a random strategy is a
fuzzy rule-based system in which each of the rules has a probability such
that some rules are more likely to fire than others.

• Most Specific: This strategy is based on the number of conditions of the
rules. From the conflict set, the rule with the most conditions is chosen.
This is based on the assumption that if it has the most conditions then it
has the most relevance to the existing data.

• Least Recently Used: Each of the rules is accompanied by a time or step
stamp, which marks the last time it was used. This maximizes the number
of individual rules that are fired at least once. If all rules are needed for the
solution of a given problem, this is a perfect strategy.

• "Best" rule: For this to work, each rule is given a ‘weight,’ which specifies
how much it should be considered over the alternatives. The rule with the
most preferable outcomes is chosen based on this weight.

There are two broad kinds of rule system: forward chaining systems, and
backward chaining systems. In a forward chaining system you start with the
initial facts, and keep using the rules to draw new conclusions (or take certain
actions) given those facts. In a backward chaining system you start with some
hypothesis (or goal) you are trying to prove, and keep looking for rules that
would allow you to conclude that hypothesis, perhaps setting new sub goals to
prove as you go. Forward chaining systems are primarily data-driven, while
backward chaining systems are goal-driven.

Procedural Versus Declarative Knowledge

Preliminaries of Rule-based systems may be viewed as use of logical assertions
within the knowledge representation.

A declarative representation is one in which knowledge is specified, but the use
to which that knowledge is to be put is not given. A declarative representation,
we must augment it with a program that specifies what is to be done to the

 39

knowledge and how. For example, a set of logical assertions can be combined
with a resolution theorem prover to give a complete program for solving
problems. There is a different way, though, in which logical assertions can be
viewed, namely as a program, rather than as data to a program. In this view, the
implication statements define the legitimate reasoning paths and the atomic
assertions provide the starting points (or, if we reason backward, the ending
points) of those paths.

A procedural representation is one in which the control information that is
necessary to use the knowledge is considered to be embedded in the knowledge
itself. To use a procedural representation, we need to augment it with an
interpreter that follows the instructions given in the knowledge.

Screening logical assertions as code is not a very essential idea, given that all
programs are really data to other programs that interpret (or compile) and
execute them. The real difference between the declarative and the procedural
views of knowledge lies in where control information resides. For example,
consider the knowledge base:

man (Marcus)

man (Caesar)

person(Cleopatra)

∀x : man (x) person(x)

Now consider trying to extract from this knowledge base the answer to the
question

 ∃y : person(y)

We want to bind y to a particular value for which person is true. Our knowledge
base justifies any of the following answers:

y = Marcus

y = Caesar

y = Cleopatra

For the reason that there is more than one value that satisfies the predicate, but
only one value is needed, the answer to the question will depend on the order in
which the assertions are examined during the search for a response.

 Of course, nondeterministic programs are possible. So, we could view these
assertions as a nondeterministic program whose output is simply not defined. If
we do this, then we have a "procedural" representation that actually contains no
more information than does the "declarative" form. But most systems that view
knowledge as procedural do not do this. The reason for this is that, at least if the
procedure is to execute on any sequential or on most existing parallel machines,
some decision must be made about the order in which the assertions will be

 40

examined. There is no hardware support for randomness. So if the interpreter
must have a way of-deciding, there is no real reason not to specify it as part of
the definition of the language and thus to define the meaning of any particular
program in the language. For example, we might specify that assertions will be
examined in the order in which they appear in the program and that search will
proceed depth-first, by which we mean that if a new subgoal is established then it
will be pursued immediately and other paths will only be examined if the new one
fails. If we do that, then the assertions we gave above describe a program that
will answer our question with

 y = Cleopatra

To see clearly the difference between declarative and procedural
representations, consider the following assertions:

man(Marcus)

 man(Caesar)

 ∀x : man(x) person(x)

 person(Cleopatra)

 Viewed declaratively, this is the same knowledge base that we had before. All
the same answers are supported by the system and no one of them is explicitly
selected. But viewed procedurally, and using the control model we used to get
Cleopatra as our answer before, this is a different knowledge base since now the
answer to our question is Marcus. This happens because the first statement that
can achieve the person goal is the inference rule

∀x: man(x) person(x).

This rule sets up a subgoal to find a man. Again the statements are examined
from the beginning, and now Marcus is found to satisfy the subgoal and thus also
the goal. So Marcus is reported as the answer.

It is important to keep in mind that although we have said that a procedural
representation encodes control information in the knowledge base, it does so
only to the extent that the interpreter for the knowledge base recognizes that
control information. So we could have gotten a different answer to the person
question by leaving our original knowledge base intact and changing the
interpreter so that it examines statements from last to first (but still pursuing
depth-first search). Following this control regime, we report Caesar as our
answer.

There has been a great deal of disagreement in AI over whether declarative or
procedural knowledge representation frameworks are better. There is no clear-
cut answer to the question. As you can see from this discussion, the distinction
between the two forms is often very fuzzy. Rather than try to answer the question
of which approach is better, what we do in the rest of this chapter is to describe
ways in which rule formalisms and interpreters can be combined to solve

 41

problems. We begin with a mechanism called logic programming, and then we
consider more flexible structures for rule-based systems.

4.2 Forwards versus Backwards Reasoning

Whether you use forward or backwards reasoning to solve a problem depends
on the properties of your rule set and initial facts. Sometimes, if you have some
particular goal (to test some hypothesis), then backward chaining will be much
more efficient, as you avoid drawing conclusions from irrelevant facts. However,
sometimes backward chaining can be very wasteful - there may be many
possible ways of trying to prove something, and you may have to try almost all of
them before you find one that works. Forward chaining may be better if you have
lots of things you want to prove (or if you just want to find out in general what
new facts are true); when you have a small set of initial facts; and when there
tend to be lots of different rules which allow you to draw the same conclusion.
Backward chaining may be better if you are trying to prove a single fact, given a
large set of initial facts, and where, if you used forward chaining, lots of rules
would be eligible to fire in any cycle. The guidelines forward & backward
reasoning are as follows:

 Move from the smaller set of states to the larger set of states.
 Proceed in the direction with the lower branching factor.
 Proceed in the direction that corresponds more closely with the way the

user will think.
 Proceed in the direction that corresponds more closely with the way the

problem-solving episodes will be triggered.
 Forward rules: to encode knowledge about how to respond to certain

input.
 Backward rules: to encode knowledge about how to achieve particular

goals.

Problems in AI can be handled in two of the available ways:

• Forward, from the start states

• Backward, from the goal states, which is used in PROLOG as well.

Taking into account the problem of solving a particular instance of the 8-puzzle.
The rules to be used for solving the puzzle can be written as shown in Figure 4.1.

Reason forward from the initial states. Begin building a tree of move sequences
that might be solutions by starting with the initial configuration(s) at the root of the
tree. Generate the next

 42

Figure 4.1: A Sample of the Rules for solving the 8-Puzzle

level of the tree by finding all the rules whose left sides match the root node and
using their right sides to create the new configurations. Generate the next level
by taking each node generated at the previous level and applying to it all of the
rules whose left sides match it. Continue until a configuration that matches the
goal state is generated.

Reason backward from the goal states. Begin building a tree of move sequences
that might be solutions by starting with the goal configuration(s) at the root of the
tree. Generate the next level of the tree by finding all the rules whose right sides
match the root node. These are all the rules that, if only we could apply them,
would generate the state we want. Use the left sides of the rules to generate the
nodes at this second level of the tree. Generate the next level of the tree by
taking each node at the previous level and finding all the rules whose right sides
match it. Then use the corresponding left sides to generate the new nodes.
Continue until a node that matches the initial state is generated. This method of
reasoning backward from the desired final state is often called goal-directed
reasoning.

To reason forward, the left sides are matched against the current state and the
right sides (the results) are used to generate new nodes until the goal is reached.
To reason backward, the right sides are matched against the current node and
the left sides are used to generate new nodes representing new goal states to be
achieved. This continues until one of these goal states is matched by an initial
state.

In the case of the 8-puzzle, it does not make much difference whether we reason
, forward or backward; about the same number of paths will be explored in either
case. But this is not always true. Depending on the topology of the problem
space, it may be significantly more efficient to search in one direction rather than
the other. Four factors influence the question of whether it is better to reason
forward or backward:

 43

• Are there more possible start states or goal states? We would like to move
from the smaller set of states to the larger (and thus easier to find) set of
states.

• In which direction is the branching factor (i.e., the average number of nodes
that can be reached directly from a single node)? We would like to proceed in
the direction with the lower branching factor.

• Will the program be asked to justify its reasoning process to a user? If so, it is
important to proceed in the direction that corresponds more closely with the
way the user will think.

• What kind of event is going to trigger a problem-solving episode? If it is the
arrival of a new fact, forward reasoning makes sense. If it is a query to which
a response is desired, backward reasoning is more natural.

We may as well consider a few practical examples that make these issues
clearer. Have you ever noticed that it seems easier to drive from an unfamiliar
place home than from home to an unfamiliar place. The branching factor is
roughly the same in both directions. But for the purpose of finding our way
around, there are many more locations that count as being home than there are
locations that count as the unfamiliar target place. Any place from which we know
how to get home can be considered as equivalent to home. If we can get to any
such place, we can get home easily. But in order to find a route from where we
are to an unfamiliar place, we pretty much have to be already at the unfamiliar
place. So in going toward the unfamiliar place, we are aiming at a much smaller
target than in going home. This suggests that if our starting position is home and
our goal position is the unfamiliar place, we should plan our route by reasoning
backward from the unfamiliar place.

On the other hand, consider the problem of symbolic integration. The problem
space is the set of formulas, some of which contain integral expressions. The
start state is a particular formula containing some integral expression. The
desired goal state is a formula that is equivalent to the initial one and that does
not contain any integral expressions. So we begin with a single easily identified
start state and a huge number of possible goal states. Thus to solve this
problem, it is better to reason forward using the rules for integration to try to
generate an integral-free expression than to start with arbitrary integral-free
expressions, use the rules for differentiation, and try to generate the particular
integral we are trying to solve. Again we want to head toward the largest target;
this time that means chaining forward. These two examples have illustrated the
importance of the relative number of start states to goal states in determining the
optimal direction in which to search when the branching factor is approximately
the same in both directions. When the branching factor is not the same, however,
it must also be taken into account.

Consider again the problem of proving theorems in some particular domain of
mathematics. Our goal state is the particular theorem to be proved. Our initial
states are normally a small set of axioms. Neither of these sets is significantly

 44

bigger than the other. But consider the branching factor in each of the two
directions, from a small set of axioms we can derive a very large number of
theorems. On the other hand, this large number of theorems must go back to the
small set of axioms. So the branching factor is significantly greater going forward
from the axioms to the theorems than it is going backward from theorems to
axioms. This suggests that it would be much better to reason backward when
trying to prove theorems. Mathematicians have long realized this, as have the
designers of theorem-proving programs.

The third factor that determines the direction in which search should proceed is
the need to generate coherent justifications of the reasoning process as it
proceeds. This is often crucial for the acceptance of programs for the
performance of very important tasks. For example, doctors are unwilling to
accept the advice of a diagnostic program that cannot explain its reasoning to the
doctors' satisfaction. This issue was of concern to the designers of MYCIN, a
program that diagnoses infectious diseases. It reasons backward from its goal of
determining the cause of a patient's illness. To do that, it uses rules that tell it
such things as "If the organism has the following set of characteristics as
determined by the lab results, then it is likely that it is organism x. By reasoning
backward using such rules, the program can answer questions like "Why should I
perform that test you just asked for?" with such answers as "Because it would
help to determine whether organism x is present." By describing the search
process as the application of a set of production rules, it is easy to describe the
specific search algorithms without reference to the direction of the search.

We can also search both forward from the start state and backward from the goal
simultaneously until two paths meet somewhere in between. This strategy is
called bidirectional search. It seems appealing if the number of nodes at each
step grows exponentially with the number of steps that have been taken.
Empirical results suggest that for blind search, this divide-and-conquer strategy is
indeed effective. Unfortunately, other results, de Champeau and Sint suggest
that for informed, heuristic search it is much less likely to be so. Figure 4.2 shows
why bidirectional search may be ineffective. The two searches may pass each
other, resulting in more work than it would have taken for one of them, on Its
own, to have finished.

However, if individual forward and backward steps are performed as specified by
a program that has been carefully constructed to exploit each in exactly those
situations where it can be the most profitable, the results can be more
encouraging. In fact, many successful AI applications have been written using a
combination of forward and backward reasoning, and most AI programming
environments provide explicit support for such hybrid reasoning.

Although in principle the same set of rules can be used for both forward and
backward reasoning, in practice it has proved useful to define two classes of
rules, each of which encodes a particular kind of knowledge.

• Forward rules, which encode knowledge about how to respond to certain
input configurations.

 45

• Backward rules, which encode knowledge about how to achieve particular
goals.

• By separating rules into these two classes, we essentially add to each rule an
additional piece of information, namely how it should be used in problem
solving.

Figure 4.2: A Bad Use of Heuristic Bi-directional Search

4.3 Forward Chaining System

In a forward chaining system the facts in the system are represented in a working
memory, which is continually updated. Rules in the system represent possible
actions to take when specified conditions hold on items in the working memory -
they are sometimes called condition-action rules. The conditions are usually
patterns that must match items in the working memory, while the actions usually
involve adding or deleting items from the working memory. The interpreter
controls the application of the rules, given the working memory, thus controlling
the system's activity. It is based on a cycle of activity sometimes known as a
recognise-act cycle. The system first checks to find all the rules whose conditions
hold, given the current state of working memory. It then selects one and performs
the actions in the action part of the rule. (The selection of a rule to fire is based
on fixed strategies, known as conflict resolution strategies.) The actions will result
in a new working memory, and the cycle begins again. This cycle will be
repeated until either no rules fire, or some specified goal state is satisfied.

 46

4.4 Backward Chaining System

If you do know what the conclusion might be, or have some specific hypothesis
to test, forward chaining systems may be inefficient. You could keep on forward
chaining until no more rules apply or you have added your hypothesis to the
working memory. But in the process the system is likely to do a lot of irrelevant
work, adding uninteresting conclusions to working memory. To avoid this we can
use backward chaining systems.

Given a goal state to try and prove the system will first check to see if the goal
matches the initial facts given. If it does, then that goal succeeds. If it doesn't the
system will look for rules whose conclusions (previously referred to as actions)
match the goal. One such rule will be chosen, and the system will then try to
prove any facts in the preconditions of the rule using the same procedure, setting
these as new goals to prove. Note that a backward chaining system does not
need to update a working memory. Instead it needs to keep track of what goals it
needs to prove to prove its main hypothesis.

4.5 Conflict Resolution

The result of the matching process is a list of rules whose antecedents have
matched the current state description along with whatever variable bindings were
generated by the matching process. It is the job of the search method to decide
on the order in which rules will be applied. But sometimes it is useful to
incorporate some of that decision making into the matching process. This phase
of the matching process is then called conflict resolution.

There are three basic approaches to the problem of conflict resolution in a
production system:

 Assign a preference based on the rule that matched.

 Assign a preference based on the objects that matched.
 Assign a preference based on the action that the matched rule would

perform.

4.6 Use of No Backtrack

The real world is unpredictable, dynamic and uncertain. A robot cannot hope
maintain a correct and complete description of the world. This means that robot
does not consider the trade-off between devising and executing plans. This
trade-off has several aspects. For one thing, robot may not possess enough
information about the world for it to do any useful planning. In this case, it mostly
first engages in information gathering activity. Furthermore, once it begins
executing a plan, the robot most continually monitors the results of its actions. If
the result is unexpected, then re-planning may be necessary.

 47

Since robots operate in the real world, so searching and backtracking is a costly
affair. Consider an example of an AI-first search for moving furniture into a
room, operating in a simulated world with full information. Preconditions of
operators can be checked quickly, and if an operator fails to apply, another can
be tried checking preconditions in the real world, however, can be time
consuming if the robot does not have full information. These problems can be
solved by the adopting the approach of non back

4.7 Summary

In this lesson we have seen how to represent knowledge declaratively in rule-
based systems and how to reason with that knowledge. A declarative
representation is one in which knowledge is specified, but the use to which that
knowledge is to be put is not given where as a procedural representation is one
in which the control information that is necessary to use the knowledge is
considered to be embedded in the knowledge itself.

In PROLOG and many theorem-proving systems, rules are indexed by the
predicates they contain, so all the rules that could be applicable to proving a
particular fact can be accessed fairly quickly. The method of reasoning backward
from the desired final state is called goal-directed reasoning.

Backward-chaining systems, of which PROLOG is an example, are good for goal
directed problem solving. Backward-chaining systems usually use depth-first
backtracking to select individual rules, but forward-chaining systems generally
employ sophisticated conflict resolution strategies to choose among the
applicable rules.

4.8 Key Words

Forward Reasoning, Conflict Resolution, Backward Reasoning, Forward
Chaining System, Backward Chaining System, & Use of No Backtrack.

4.9 Self Assessments Questions

Answer the following Questions:

Q1. Differentiate between Rule-based architecture and non-production system
architecture.

Q2. What do you understand by forward and backward reasoning?

Q3. Write short note on the following:

a. Conflict Resolution

b. Rule Based System

c. Set of Support Resolution Strategy

d. Use of No Backtrack

 48

Reference/Suggested Reading

 Foundations of Artificial Intelligence and Expert System - V S
Janakiraman, K Sarukesi, & P Gopalakrishanan, Macmillan Series.

 Artificial Intelligence – E. Rich and K. Knight

 Principles of Artificial Intelligence – Nilsson

 Expert Systems-Paul Harmon and David King, Wiley Press.

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe,
eds., Addison Wesley.

 Introduction to Artificial Intelligence and Expert System- Dan W. Patterson,
PHI, Feb., 2003.

 49

Paper Code : MCA 402 Author :Om Parkash
Lesson No. 05 Vettor : Saroj
Lesson Name: Structured Knowledge Representation

Structure
5.0 Objectives
5.1 Significance of Knowledge Representation
5.2 Semantic Nets
5.3 Frames
5.4 Scripts
5.5 Exceptions & Defaults
5.6 Summary
5.7 Self Assessment Questions

5.0 Objective
In this lesson various structured knowledge techniques via semantic nets or networks,
frames, scripts & conceptual dependency are discussed. It shows how knowledge is
actually pictureized and how effectively it resembles the representation of knowledge in
human brain. After completion of this module, students come to know how to represent
or handle problem(s) in AI.
5.1 Significance of Knowledge Representation
A representation is a way of describing certain fragments or information so that any
reasoning system can easily adopt it for inferencing purpose. Knowledge representation is
a study of ways of how knowledge is actually pictureized and how effectively it
resembles the representation of knowledge in human brain.

A Knowledge representation system should provide ways of representing complex
knowledge and should possess the following characteristics:

 The representation scheme should have a set of well-defined syntax and
semantics.

 The Knowledge representation scheme should have good expressive
capacity. A good expressive capability will catalyze the inferencing
mechanism in its reasoning process.

 From the computer system point of view, the representation must be
efficient. By this we mean that it should use only limited resources without
compromising on the expressive power.

Major differences between Database and Knowledge Base.

Database Knowledge Base
Collection of data representing facts. Has information at higher level of

abstraction.
Large volume of data and facts change Significantly smaller than database and

 50

over time. changes are gradual.
Operates on a single object. Operates on a class of objects rather

than a single object.
Clerical personnel perform updates. Domain experts perform updates.
All information needed to be explicitly
stated.

Has the power of inferencing.

Maintained for operational purposes. Used for data analysis and planning.
Represented by relational or network or
hierarchical model.

Knowledge representation is by logic or
rules or frames or semantic nets.

Predominant way of interaction is by
transaction programs and report
generators.

Has to have a consultation with the
system and provide needed data to
obtain the solution.

In this chapter we discuss about some of the widely known representation
schemes. They are

1. Semantic Nets
2. Frames
3. Conceptual Dependency
4. Scripts

5.2 Semantics Nets (Associative Network)

A semantic network or a semantic net is a structure for representing knowledge
as a pattern of interconnected nodes and arcs. It is also defined as a graphical
representation of knowledge. The objects under consideration serve as nodes
and the relationships with another nodes give the arcs.

In a semantic net, information is represented as a set of nodes connected to
each other by a set of labeled ones, which represent relationships among the
nodes. A fragment of a typical semantic net is shown in Figure 5.1.

Figure 5.1: A Semantic Network

This network contains example of both the is a and instance relations, as well as
some other, more domain-specific relations like team and uniform-color. In this
network we would use inheritance to derive the additional relation.
has-part (Pee-Wee-Reese, Nose).

 51

Partitioned Semantic Nets

Suppose we want to represent simple quantified expressions in semantic nets.
One was to do this is to partition the semantic net into a hierarchical set of
spaces, each of which corresponds to the scope of one or more variables. To
see how this works, consider first the simple net shown in Figure 5.2. This net
corresponds to the statement.

The dog bit the mail carrier.

The nodes Dogs, Bite, and Mail-Carrier represent the classes of dogs, bitings,
and mail carriers, respectively, while the nodes d, b, and m represent a particular
dog, a particular biting, and a particular mail carrier. A single net with no
partitioning can easily represent this fact.

But now suppose that we want to represent the fact

Every dog has bitten a mail carrier.

Figure 5.2: Using Partitioned Semantic Nets

() ()y,xBite)y(CarrierMail:yxDog:x ∧−∃→∀

It is necessary to encode the scope of the universally quantified variable x in
order to represent this variable. This can be done using partitioning as shown in
Figure 5.2 (b). The node stands for the assertion given above. Node g is an
instance of the special class GS of general statements about the world (i.e.,
those with universal quantifiers). Every element to GS has at least two attributes:
a form, which states the relation that is being assert one or more ∀ connections,
one for each of the universally quantified variable. In this example, there is only

 52

one such variable d, which can stand for any element the class Dogs. The other
two variables in the form, b and m, are understood to existentially qualified. In
other words, for every dog d, there exists a biting event and a mail carrier m,
such that d is the assailant of b and m is the victim.

To see how partitioning makes variable quantification explicit, consider next
similar sentence:

Every dog in town has bitten the constable

The representation of this sentence is shown in Figure 5.2 (c). In this net, the
node representing the victim lies outside the form of the general statement. Thus
it is not viewed as an existentially quantified variable whose value may depend
on the value of d. Instead it is interpreted as standing for a specific entity (in this
case, a particular table), just as do other nodes in a standard, no partitioned net.
Figure 5.2(d) shows how yet another similar sentences

Every dog has bitten every mail carrier.

should be represented. In this case, g has two ∀ links, one pointing to d, which
represents dog, and one pointing to m, representing ay mail carrier.

The spaces of a partitioned semantic net are related to each other by an
inclusion Search. For example, in Figure 5.2(d), space SI is included in space
SA. Whenever search process operates in a partitioned semantic net, it can
explore nodes and arcs in space from which it starts and in other spaces that
contain the starting point, but it does not go downward, except in special
circumstances, such as when a form arc is being traversed. So, returning to
figure 5.2(d), from node d it can be determined that d must be a dog. But if we
were to start at the node Dogs and search for all known instances dogs by
traversing is a likes, we would not find d since it and the link to it are in space SI,
which is at a lower level than space SA, which contains Dogs. This is constant,
since d does not stand for a particular dog; it is merely a variable that can be
initiated with a value that represents a dog.

5.3 Frames

Marvin Minsky in the book on computer vision proposed frames as a means of
representing common-sense knowledge. In that Minsky proposed that knowledge
is organized into small “packets” called frames. The contents of the frame are
certain slots, which have values. All frames of a given situation constitute the
system. A frame can be defined as a data structure that has slots for various
objects and a collection of frames consists of exceptions for a given situation. A
frame structure provides facilities for describing objects, facts about situations,
procedures on what to do when a situation is encountered. Because of this
facilities a frames are used to represent the two types of knowledge, viz.,
declarative/factual and procedural.

 53

Default Frames

Set theory provides a good basis for understanding frame systems. Although not
all frame systems are defined this way, we do so here. In this view, each frame
represents either a class (a set) or an instance (an element of a class). To see
how this works, consider the frame system shown in Figure 6.5. In this example,
the frames Person, Adult-Male, ML-Baseball-Player (corresponding to major
league baseball players) Pitter, and ML-Baseball-Team (for major league
baseball team) are all classes. The frame Pee-Wee-Reese and Brooklyn-
Dodgers are instances.

The is a relation that we have been using without a precise definition is in fact the
subset relation. The isa of adult males is a subset of the set of people. The set of
major league baseball players is a subset of the set of adult males, and so forth.
Our instance relation corresponds to the relation element of Pee Wee Reese that
is an element of the set of fielders. Thus he is also an element of all of the
superset of fielders, including major league baseball players and people. The
transitivity of isa that we have taken for granted in our description of property
inheritance follows directly from the transitivity of the subset relation.

Both the isa and instance relations have inverse attributes, where we call
subclasses and all-instances. We do not bother to write them explicitly in our
examples unless we need to refer to them. We assume that the frame system
maintains them automatically. Either explicitly or by computing them if necessary.

Since a class represents a set, there are two kinds of attributes that can be
associated with it. There are attributes about the set itself, and there are
attributes that are to be inherited by each element of the set. We indicate the
difference between these two by prefixing the latter with an asterisk (*). For
example, consider the class ML-Baseball-Player. We have shown only two
properties of it as a set: It is a subset of the set of adult males. And it has
cardinality 624 (i.e., there are 624 major league baseball players). We have listed
five properties that all major league baseball players have (height, bats, batting-
average, team, and uniform-colour), and we have specified default values for the
first three of them. By providing both kinds of slots, we allow a class both to
define a set of objects and to describe a prototypical object of the set.

Sometimes, the distinction between a set and an individual instance may not be
seen clearly. For example, the team Brookln-Dodgers, which we have described
as a instance of the class of major league baseball teams, could be thought of as
a set of players in fact, notice that the value of the slot players is a set. Suppose,
instead, what we want to represent the Dodgers as a class instead of an
instance. Then its instances would be the individual players. It cannot stay where
it is in the isa hierarchy; it cannot be a subclass of ML-Baseball-Team, because if
it were, then its elements, namely the players would also, by the transitivity of
subclass, be elements of ML-Baseball-team, which is not what we want so say.
We have to put it somewhere else in the isa hierarchy. For example, we could
make it a subclass of major league baseball players. Then its elements, the
players, are also elements of ML-Baseball-Players, Adult-Male, and Person. That

 54

is acceptable. But if we do that, we lose the ability to inherit properties of the
Dodges from general information about baseball teams. We can still inherit
attributes for the elements of the team, but we cannot inherit properties of the
team as a whole, i.e., of the set of players. For example, we might like to know
what the default size of the team is, that it has a manager, and so on. The
easiest way to allow for this is to go back to the idea of the Dodgers as an
instance of ML-Baseball-Team, with the set of players given as a slot value.

Person
 isa: Mammal
 cardinality: 6,000,000,000
 *handed: Right

Adult-Male
 isa: Person
 cardinality: 2,000,000,000
 *height; 5-10

ML-Baseball-Player
 isa: Adult-Male
 cardinality: 624
 *height: 6-1
 *bats: equal to handed
 *batting-average: . 252
 *team:
 *uniform-color:
Fielder
 Isa: ML-Baseball-Player
 cardinality: 36
 *batting-average .262

Johan
 insance: Fielder
 height: 5-10
 bats: Right
 batting-average: . 309
 team: Brooklyn-Dodgers
 uniform-color: Blue
ML-Baseball-Team
 isa: Team
 cardinality: 26
 *team-size: 24
 *manager: 24
Brooklyn-Dodgers
 instance: ML-Baseball-Team

 55

 team-size: 24
 manager: Leo-Durocher
 players: (Johan,Pee-Wee-
Reese,…)

Figure 5.3: A Simplified Frame System

But what we have encountered here is an example of a more general problem. A
class is a set, and we want to be able to talk about properties that its elements
possess. We want to use inheritance to infer those properties from general
knowledge about the set. But a class is also an entity in itself. It may possess
properties that belong not to the individual instances but rather to the class as a
whole. In the case of Brooklyn-Dodgers, such properties included team size and
the existence of a manager. We may even want to inherit some of these
properties from a more general kind of set. For example, the Dodgers can inherit
a default team size from the set of all major league baseball teams. To support
this, we need to view a class as two things simultaneously: a subset (isa) of a
larger class that also contains its elements and an instance (instance) of a class
of sets, from which it inherits its set-level properties.

To make this distinction clear, it is useful to distinguish between regular classes,
whose elements are individual entities, and meta classes, which are special
classes whose elements are themselves classes. A class is now an element of
(instance) some class (or classes) as well as a subclass (isa) of one or more
classes. A class inherits properties from the class of which it is an instance, just
as any instance does. In addition, a class passes inheritable properties down
from is super classes to its instances.

Let’s consider an example. Figure 5.4 shows how we would represent teams as
classes using this distinction. Figure 5.5 shows a graphic view of the same
classes. The most basic met class in the class represents the set of all classes.
All classes are instance of it, either directly or through one of its subclasses. In
the example, Team in a subclass (subset) of Class and ML-Baseball-Team is a
subclass of Team. The class introduces the attribute cardinality, which is to be
inherited by all instances of Class (including itself). This makes sense that all the
instances of Class are sets and all sets have cardinality.

Team represents a subset of the set of all sets, namely those elements are sets
of players on a team. It inherits the property of having cardinality from Class.
Team introduces the attribute team-size, which all its elements possess. Notice
that team-size is like cardinality in that it measures the size of a set. But it applies
to something different cardinality applies to sets of sets and is inherited by all

 56

elements of Class. The slot team-size applies to the element of those sets that
happen to be teams. Those elements are of individuals.

ML-Baseball-Team is also an instance of Class, since it is a set. It inherits the
property of having cardinality from the set of which it is an instance, namely
Class. But it is a subset of Team. All of its instances will have the property of
having a team-size since they are also instances of the super class Team. We
have added at this level the additional fact that the default team size is 24; so all
instance of ML-Baseball-Team will inherit that as well. In addition, we have
added the inheritable slot manager.

Brooklyn-Dodgers in an instance of a ML-Baseball-Team. It is not an instance of
Class because its elements are individuals, not sets. Brooklyn-Dodgers is a
subclass of ML-Baseball-Player since all of its elements are also elements of that
set. Since it is an instance of a ML-Baseball-Team, it inherits the properties
team-size and manager, as well as their default values. It specifies a new
attribute uniform-colour, which is to be inherited by all of its instances (who will
be individual players).

Class
 instance : Class
 isa : Class
 *cardinanality :

Team
 istance : Class
 isa : Class
 cardinality : { the number of teams
that exist}
 * team size : { each team has a size}

ML – Baseball – Team
 instance : Class
 isa : Team
 cardinality : 26 { the number of

baseball teams that exist}
 * team-size : 24 { default 24 players on
a team}
 * manager :

Brooklyn-Dodgers
 instance : ML – Baseball – Team

 57

 isa : ML-Baseball – Player
 team-size : 24
 manager : Leo – Durocher
 * unifoirm-color Blue

Pee-Wee – Reese
 instance : Broklyn – Dodgers
 instance : Fielder
 uniform-color: Blue
 batting –average : 309

Figure 5.3 : Representing the Class of All Teams as a Metaclass

Figure 5.4: Classes and Metaclasses

Finally, Pee-Wee-Reese is an instance of Brooklyn-Dodgers. That makes him
also, by transitivity up isa links, an instance of ML-Baseball-Player. But recall that
in earlier example we also used the class Fielder, to which we attached the fact
that fielders have above average batting averages. To allow that here, we simply
make Pee Wee an instance of Fielder as well. He will thus inherit properties from
both Brooklyn-Dodgers and from fielder, as well as from the classes above these.
We need to guarantee that when multiple inheritances occurs, as it does here,
that it works correctly. Specified in this case, we need to assure that batting –
average gets inherited from Fielder and not from ML-Baseball-Player through
Brooklyn-Dodgers.

In all the frame system we illustrate, all classes are instances of the metaclass
Class. As a result, they all have the attribute cardinality out of our description of
our examples, though unless there is some particular reason to include them.

 58

Every class is a set. But not every set should be described as a class. A class
describes a set of entries that share significant properties. In particular, the
default information associated with a class can be used as a basis for inferring
values for the properties if it’s in individual elements. So there is an advantage to
representing as a class these sets for which membership serves as a basis for
nonmonotonic inheritance. Typically, these are sets in which membership is not
highly ephemeral. Instead, membership is on some fundamental structural or
functional properties. To see the difference, consider the following sets:

• People

• People who are major league baseball players

• People who are on my plane to New York

The first two sets can be advantageously represented as classes, with which a
sub-statistical number of inheritable attributes can be associated. The last,
though, is different. The only properties that all the elements of that set probably
share are the definition of the set itself and some other properties that follow from
the definition (e.g. they are being transported from one place to another). A
simple set, with some associated assertions, is adequate to represent these
facts: non-monotonic inheritance is not necessary.

5.4 Scripts

Frames represented a general knowledge representation structure, which can
accommodate all kinds of knowledge. Scripts on the other hand, help exclusively in
representing stereotype events that takes place in day-to-day activities. Some such events
are:

 Going to hotel, eating something, paying the bill and existing.
 Going to threatre, getting a ticket, viewing the film/drama and leaving.
 Going to bank for withdrawal, filling the withdrawal slip/cheque, presenting

to the cashier, getting money and leaving the bank.

A script is a knowledge representation structure that is extensively used for
describing stereotype sequences of actions. It is the special case frame
structure. These are intended for capturing situations in which behavior is very
stylized. Similar to frames, scripts do have slots and with each slot, we associate
information about the slot. Scripts tell people that what can happen in a situation,
what events follow and what role every actor plays. It is possible to visualize the
same and scripts present a way of representing them effectively what a
reasoning mechanism exactly understands what happens at that situation.

5.5 Slots Exceptions

We have provided a way to describe sets of objects and individual objects, both
in terms of attributes and values. Thus we have made extensive use of attributes,

 59

which we have represented as slots attached to frames. But it turns out that there
are several means why we would like to be able to represent attributes explicitly
and describe their properties. Some of the properties we would like to be able to
represent and use in meaning include:

• The classes to which the attribute can be attached, i.e. for what classes
does it make sense? For example, weight makes sense for physical
objects but not for conceptual ones (except in some metaphorical sense).

• A value that all instances of a class must have by the definition of the
class.

• A default value for the attribute.

• Rules for inheriting values for the attribute. The usual rule is to inherit
down isa and instance links. But some attributes inherit in other ways. For
example last-name inherits down the child of link.

ML-Baseball-Player
 is-covered by : { Pitcher,Catcher,
Fielder}
 { American-Leaguer ,
National-Leagwer}
Pitcher
 isa : ML-Baseball –Player
 mutually – disjoint with: { catcher, Fielder}

Catcher
 isa : ML-Baseball – Player
 mutually-disjoint –with : {Pitcher, Fielder}

Fielder
 isa : ML-Baseball Player
 mutually –disjoint-with : { Pitcher, Catcher}

American – Leaguer
 isa : ML-Baseball –Player
 mutually-disjoint-with { National-Leaguer }

National Leaguer
 isa : ML-Baseball-Player

 60

 mutually-disjoint-with : {american-Leaguer}

Three-Finger-Brown
 instance : Pitcher
 instance : National – Leaguer

Figure 5.5 : Representing Relationships among Classes

• Rules for computing a value separately from inheritance. One extreme
form of such a rule is a procedure written in some procedural
programming language such as LISP.

• An inverse attribute.

• Whether the slot is single – valued or multivalued.

In order to be able to represent these attributes of attributes, we need to describe
attributes (slots) as frames. These frames will be organized into an isa hierarchy,
just as any other frames for attributes of slots. Before we can describe such a
hierarchy in detail, we need to formalize our notion of a slot.

A slot is a relation. It maps from elements of its domain (the classes for which it
makes sense) to elements of its range (its possible values). A relation is a set of
ordered pair. Thus it makes sense to say that one relation (R1) is a subset of
another (R2). In the case, R1 is a specification of R2, so in our terminology is a
(R1, R2). Since a slot is yet the set of all slots, which we will call Slot, is a
metaclass. Its instances are slots, which may have subslots.

Figure 5.5 and 5.6 illustrate several examples of slots represented as frames of
slot metaclass. Its instances are slots (each of which is a set of ordered pairs).
Associated with the metaclass are attributes that each instance(i.e. each actual
slot) will inherit. Each slot, since it is a relation, has a domain and a range. We
represent the domain in the slot labelled domain. We break up the representation
of the range into two parts: contains logical expressions that further constrain the
range to be TRUE. The advantage to breaking the description apart into these
two pieces is that type checking a such cheaper than is arbitrary constraint
checking, so it is useful to be able to do it separately and early during some
reasoning processes.

The other slots do what you would expect from their names. If there is a value for
definition, it must be propagated to all instances of the slot. If there is a value for
default, that value is inherited to all instance of the slot unless there is an
overriding value. The attribute transfers lists other slots from which values for this
slot can be derived through inheritance. The to-compute slot contains a
procedure for deriving its value. Inverse, sometimes they are not useful enough
in reasoning to be worth representing. And single valued is used to mark the
special cases in which the slot is a function and can have only one value.

Of course, there is a no advantage of representing these properties of slots if
there is a reasoning mechanism that exploits them. In the rest of our discussion

 61

we assume for the frame system interpreter knows how to reason with all of
these slots of slots as part of its built-in reasoning capability. In particular, we
assume that it is capable of forming the following reasoning actions.

• Consistency checking to verify that when a slot value is added to a frame

 - The slot makes sense for the frame. This relies on the domain attribute of
the slot.

Slot
 isa : Class
 instance : Class
 domain :
 range :
 range-constraint :
 definition :
 default :
 trangulars-through :
 to-compute :
 inverse :
 single-valued :

manager
 instance : Slot
 domain : ML-Baseball –

Team
 range : Person
 range-constraint : kx (baseball-
experience x, manager)
 default :

 62

 inverse : manager – of
 single – valued : TRUE

Figure 6. 9 ; Representing Slots as Frames , I

My – manager
 instance : Slot
 domain : ML-Baseball
Player
 range : Person
 range-constraint : kx(baseball-
experience x any manager)
 to-compute : kx(x,team),
manager
 single-valued : TRUE

Colour
 instance : Slot
 domain : Physical-Object
 range : Colour-Set
 transfer-through : top-level-part-of
 visual-salience : High
 single-valued : FALSE

Uniform-colour
 instance : Slot
 isa : colour
 domain : team – Player
 range : Colour – Set
 range-constraint : non-Pink
 visual-sailence : High
 single-valued : FALSE

Bats
 instance : Slot
 domain : ML-Baseball-

Player
 range : (Left,Right,
Switch)
 to-compute : kx x, handed
 single-valued : TRUE

Figure 5.6 : Representing Slots as Frames II

 - The value is a legal value for the slot. This relies on the range and
range – constraint attributes.

• Maintenance of consistency between the values for slots and their
inverses whenever one is updated.

 63

• Propagation of definition values along isa and instance links.

• Inheritance of default values along isa and instance links.

• Computation of a value of a slot as needed. This relies on the to-compute
and transfers through attributes.

• Checking that only a single value is asserted for single –valued slots.
Replacing an old value by the new one when it is asserted usually does
this. An alternative is to force explicit retraction of the old value and to
signal a contradiction if a new value is asserted when another is already
there.

There is something slightly counterintuitive about this way of defining slots. We
have defined properties range – constraint and default as parts of a slot. But we
then think of them as being properties of a slot associated with a particular class.
For example in Figure 5.7, we listed two defaults for the batting – average slot,
one associated with major league baseball players and one associated with
fielders. Figure 5.6 shows how this can be represented correctly by creating a
specialization of batting average that can he associated with a specialization of
ML-Baseball-Player to represent the more special information that is known
about the specialized class. This seems cumbersome. It is natural, though given
our definition of a slot as relation. There are really two relations here, one a
specialization of the other. And below we will define inheritance so that it looks
for values of either the slot it is given or any of that slot’s generations.

Unfortunately, although this model of slots is simple and it is internally consisted
it is not easy to see. So we introduce some notational shorthand that allows the
four most important properties of a slot (domain range definition and default) to
be defined implicitly by how the slot is used in the definitions of the classes in its
domain. We describe the domain implicitly to be the class where the slot
appears. We describe the range and any range constraints with the clause
MUST BE, as the value of an inherited slot. Figure 5.8 shows an example of this
notation. And we describe the definition and the default. If they are present by
inserting them as the value of the slot when one appears. The two will be
distinguished by perplexing a definitional value with an assts (“). We then let the
underlying book keeping of the frame system create the frames to represent slots
as they are needed.

Now let’s look at examples of how these slots can be used. The slots bats and
my manager illustrate the use of the to-compute attribute of a slot. The variable x
will be bound to the frame to which the slot is attached. We are the notation to
specify the value of a slot of a frame. Specially, x, y describes the value (s) of the
y slot it frame x. So we know that to compute a frame a value for any manager, it
is necessary find the frame’s value for team, then find the resulting team’s
manager. We have simply composed two slots to form a new one. Computing the
value of the bats slots is a even simpler. Just go get the value of the hand slot.

Batting average
 instance : Slot
 domain : ML-Baseball Player
 range : Number

 64

 range-constraint : kx(0 < x range-
constraint < 1)
 default : 252
 single-valued : TRUE

Fielder batting average
 instance : Slot
 isa : batting-average
 domain : Fielder
 range : Number
 range-constraint : kx 9o < x,range –
constraint < 1)
 default : 262
 single-valued : TRUE

Figure 5.7 Associating Defaults with Slots

ML-Baseball-Player

 Bats : MUST BE (Left, Right,
Switch)

Figure 5.8. A Shorthand Notation For Slot – Range Specification

The manager slots illustrate the use of a range constraint. It is stated in terms of
a variable x, which is bound to the frame whose manager slot is being described.
It requires that any manager be not only a person but someone with baseball
experience relies on the domain-specific function baseball experience, which
must be defined somewhere in the system.

The slots colour and uniform–colour illustrate the arrangements of slots in is
history. The relation colour is a fairly general one that holds between physical
objects colour. The attribute uniform-colour is a restricted form of colour that
applies only to team players and ones that are allowed for team uniform
(anything but pink). Arranging slots in a hierarchy is useful for the same reason
than arranging any thing else in a hierarchy is, it supports inheritance. In this
example the general slot is known to have high visual salience. The more
specific slot uniform colour then tests this property, so it too is known to have
high visual salience.

The slot colour also illustrates the use of the transfer-through slot, which defines
a way of computing a slot’s value by retrieving it from the same slot of a related
object as its example. We used transfers through to capture the fact that if you
take an object and chop it up into several top level parts (in other words, parts
that are not contained for each other) then they will all be the same colour. For
example, the arm of a sofa is the colour as the sofa. Formally what transfers
through means in this example is

John

 65

 Height : 72

Bill

 Height :

Figure 5.9 Representing Slot-Values

color(x,y) ∧ top-level–part-of(z,x)→ color(z,y)
In addition to these domain independent slot attributes slots may have domain
specific properties that support problem solving in a particular domain. Since the
frame system interpreter does not treat these slots explicitly, they will be useful
precisely to the extent that the domain problem solver exploits them.

5.6 Summary

In this lesson we have investigated different types of structural knowledge
representation methods. We considered associative networks (semantic net), a
representation based on a structure of linked nodes (concepts) and arcs
(relations) connecting the nodes. With these networks we saw how related
concepts could be structured into cohesive units and exhibited as graphical
representation. A frame is a collection of attributes (usually called slots) and
associated values (and possibly constraints on values) that describe some entity
in the world. In this lesion we also described a special frame-like structure called
scripts. Scripts are used to represent stereotypical patterns for commonly
occurring events. Like a play scripts contains actors, roles, props, and scenes,
which combine to represent a familiar situation. Scripts have been used in a
number of programs, which read and “understood” language in the form of
stories.

5.7 Key Words

Semantic Net Slots, Slots, Frame, Scripts & Exceptions & Defaults

5.8 Self Assessments Questions

Answer the following questions

Q1. Explain & distinguish between the following: -

a. Associative Network Structure

b. Frame Structure

Q2. What are the main difference between scripts and frame structure?

Q3. Write short note on the following:-

a. Exception & Defaults

b. Semantic Net

c. Slots

 66

Reference/Suggested Reading

 Foundations of Artificial Intelligence and Expert System - V S
Janakiraman, K Sarukesi, & P Gopalakrishanan, Macmillan Series.

 Artificial Intelligence – E. Rich and K. Knight

 Principles of Artificial Intelligence – Nilsson

 Expert Systems-Paul Harmon and David King, Wiley Press.

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe,
eds., Addison Wesley.

 Introduction to Artificial Intelligence and Expert System- Dan W. Patterson,
PHI, Feb., 2003.

 67

Paper Code : MCA 402 Author :Om Parkash
Lesson No. 06 Vettor : Saroj
Lesson Name: Handling Uncertainty and Learning
__
Structure
6.0 Objectives
6.1 Probabilistic Reasoning
6.2 Use of Certainty Factors
6.3 Fuzzy Logic
6.4 Concept of Learning
6.5 Learning Automation
6.6 Genetic Algorithm
6.7 Learning by Induction
6.8 Neural Networks
6.9 Summary
6.10 Self Assessment Questions

6.0 Objective
Learning is a continues process of knowledge refinement. This lesson discuss about
various learning techniques, Probabilistic Reasoning, Use of Certainty Factors, Fuzzy
Logic, Concept of Learning, Learning Automation, Genetic Algorithm, Learning by
Induction and Neural Networks. Upon completion of this lesson students come to know
how a machine acquire knowledge and better understanding of the terms like genetic
algorithm and neural networks.

6.1 Probabilistic Reasoning

Here we will examine methods that use probabilistic representations for all
knowledge and which reason by propagating the uncertainties from evidence and
assertions to conclusions. As before, the uncertainties can arise from an inability
to predict outcomes due to unreliable, vague, incomplete, or inconsistent
knowledge.

The probability of an uncertain event A is a measure of the degree of likelihood of
occurrence of that event. The set of all possible events is called the sample
space; S A probability measure is a function P(A) which maps event outcome

,.....E,E 21 from S into real numbers and which satisfies the following axioms of
probability:

1. for any event .SA ⊆

2.)S(P =1, a certain outcome

3. For iE ,Ej Φ=∩ for all ji ≠ (the iE are mutually exclusive),
() () () ...EPEP...EEEP 3232i ++=∪∪∪

From these three axioms and the rules of set theory, the basic law of probability
can be derived. Of course, the axioms are not sufficient to compute the

 68

probability of an outcome. That requires an understanding of the underlying
distributions that must be established through one of the following approaches:

1. Use of a theoretical argument that accurately characterizes the processes.

2. Using one’s familiarity and understanding of the basic processes to assign
subjective probabilities, or

3. Collecting experimental data from which statistical estimates of the
underlying distributions can be made.

Since much of the knowledge we deal with is uncertain in nature, a number of
our beliefs must be tenuous. Our conclusions are often based on available
evidence and past experience, which is often far from complete. The conclusions
are, therefore, no more than educated guesses. In a great many situations it is
possible to obtain only partial knowledge concerning the possible outcome of
some event. But, given that knowledge, one’s ability to predict the outcome is
certainly better than with no knowledge at all. We manage quite well in drawing
plausible conclusions from incomplete knowledge and past experiences.

Probabilistic reasoning is sometimes used when outcomes are unpredictable. For
example, when a physician examines a patient, the patient’s history, symptoms,
and test results provide some, but not conclusive, evidence of possible ailments.
This knowledge, together with the physician’s experience with previous patients,
improves the likelihood of predicting the unknown (disease) event, but there is
still much uncertainty in most diagnoses. Likewise, weather forecasters “guess”
at tomorrow’s weather based on available evidence such as temperature,
humidity, barometric pressure, and cloud coverage observations. The physical
relationships that overrun these phenomena are not fully understood; so
predictability is far from certain. Even a business manager must make decisions
based on uncertain predictions when the market for a new product is considered.
Many interacting factors influence the market, including the target consumer’s
lifestyle, population growth, potential consumer income, the general economic
climate, and many other dependent factors.

In all of the above cases, the level of confidence placed in the hypothesized
conclusions is dependent on the availability of reliable knowledge and the
experience of the human prognosticator. Our objective in this chapter is to
describe some approaches taken in AI systems to deal with reasoning under
similar types of uncertain conditions.

6.2 Use of Certainty Factors

MYCIN uses measures of both belief and disbelief to represent degrees of
confirmation and disconfirmation respectively in a given hypothesis. The basic
measure of belief, denoted by (),E,HMB is actually a measure of increased belief
in hypothesis H due to the evidence E. This is roughly equivalent to the
estimated increase in probability of ()E/HP over ()HP given by an expert as a
result of the knowledge gained by E. A value of 0 corresponds to no increase in

 69

belief and 1 corresponds to maximum increase or absolute belief. Likewise,
()E,HMD is a measure of the increased disbelief in hypothesis H due to evidence

E. MD ranges from 0 to +1 with +1 representing maximum increase in disbelief,
(total disbelief) and 0 representing no increase. In both measures, the evidence
E may be absent or may be replaced with another hypothesis, ().HHMB 2,1 This
represents the increased belief in 1H given 2H is true.

In an attempt to formalize the uncertainty measure in MYCIN, definitions of MB
and MD have been given in terms of prior and conditional probabilities. It should
be remembered, however, the actual values are often subjective probability
estimates provided by a physician. We have for the definitions.

 1 If () 1HP =

 () () () ()[
()HP1

HPHP,EHPmax
�������������������������������������

����E,HMB
−

−= otherwise

(6.11)

 1 If () 1HP =

 () () ()[] ()
()HP0

HPHP,E|HPmin
�����E,HMB

=
−

= otherwise

(6.12)

Note that when () ,1HP0 << and E and H are independent (So ()EHP = (),HP then
MB = MD = 0. This would be the case if E provided no useful information.

The two measures MB and MD are combined into a single measure called the
certainty factor (CF), defined by

() () ()E,HMDE,HMBE,HCF −= (6.13)

Note that the value of CF ranges from –1 (certain disbelief) to +1 (certain belief).
Furthermore, a value of CF = 0 will result if E neither confirms nor unconfirms H
(E and H are independent).

6.3 Fuzzy Logic

Fuzzy logic has rapidly become one of the most successful of today's
technologies for developing sophisticated control systems. The reason for
which is very simple. Fuzzy logic addresses such applications perfectly as it
resembles human decision making with an ability to generate precise solutions
from certain or approximate information. It fills an important gap in engineering
design methods left vacant by purely mathematical approaches (e.g. linear
control design), and purely logic-based approaches (e.g. expert systems) in
system design.

 70

While other approaches require accurate equations to model real-world
behaviors, fuzzy design can accommodate the ambiguities of real-world human
language and logic. It provides both an intuitive method for describing systems in
human terms and automates the conversion of those system specifications into
effective models.

What does it offer?
The first applications of fuzzy theory were primaly industrial, such as process
control for cement kilns. However, as the technology was further embraced,
fuzzy logic was used in more useful applications. In 1987, the first fuzzy logic-
controlled subway was opened in Sendai in northern Japan. Here, fuzzy-logic
controllers make subway journeys more comfortable with smooth braking and
acceleration. Best of all, all the driver has to do is push the start button! Fuzzy
logic was also put to work in elevators to reduce waiting time. Since then, the
applications of Fuzzy Logic technology have virtually exploded, affecting things
we use everyday.
Take for example, the fuzzy washing machine. A load of clothes in it and press
start, and the machine begins to churn, automatically choosing the best cycle.
The fuzzy microwave, Place chili, potatoes, or etc in a fuzzy microwave and push
single button, and it cooks for the right time at the proper temperature. The fuzzy
car, manuvers itself by following simple verbal instructions from its driver. It can
even stop itself when there is an obstacle immediately ahead using sensors. But,
practically the most exciting thing about it, is the simplicity involved in operating
it.

Fuzzy Rules

Human beings make decisions based on rules. Although, we may not be aware
of it, all the decisions we make are all based on computer like if-then statements.
If the weather is fine, then we may decide to go out. If the forecast says the
weather will be bad today, but fine tomorrow, then we make a decision not to go
today, and postpone it till tomorrow. Rules associate ideas and relate one event
to another.

 71

Fuzzy machines, which always tend to mimic the behavior of man, work the
same way. However, the decision and the means of choosing that decision are
replaced by fuzzy sets and the rules are replaced by fuzzy rules. Fuzzy rules also
operate using a series of if-then statements. For instance, if X then A, if y then b,
where A and B are all sets of X and Y. Fuzzy rules define fuzzy patches, which is
the key idea in fuzzy logic.
A machine is made smarter using a concept designed by Bart Kosko called the
Fuzzy Approximation Theorem(FAT). The FAT theorem generally states a finite
number of patches can cover a curve as seen in the figure below. If the patches
are large, then the rules are sloppy. If the patches are small then the rules are
fine.

Fuzzy Patches
In a fuzzy system this simply means that all our rules can be seen as patches
and the input and output of the machine can be associated together using these
patches. Graphically, if the rule patches shrink, our fuzzy subset triangles gets
narrower. Simple enough? Yes, because even novices can build control systems
that beat the best math models of control theory. Naturally, it is math-free
system.

Fuzzy Control
Fuzzy control, which directly uses fuzzy rules is the most important application in
fuzzy theory. Using a procedure originated by Ebrahim Mamdani in the late 70s,
three steps are taken to create a fuzzy controlled machine:

1) Fuzzification (Using membership functions to graphically describe a situation)
2) Rule evaluation (Application of fuzzy rules)
3) Defuzzification (Obtaining the crisp or actual results)
As a simple example on how fuzzy controls are constructed, consider the
following classic situation: the inverted pendulum. Here, the problem is to
balance a pole on a mobile platform that can move in only two directions, to the
left or to the right. The angle between the platform and the pendulum and the
angular velocity of this angle are chosen as the inputs of the system. The speed
of the platform hence, is chosen as the corresponding output.

Step 1
First of all, the different levels of output (high speed, low speed etc.) of the
platform is defined by specifying the membership functions for the fuzzy_sets.
The graph of the function is shown below

 72

Similary, the different angles between the platform and the pendulum and...

the angular velocities of specific angles are also defined

Note: For simplicity, it is assumed that all membership functions are spreaded

equally. Hence, this explains why no actual scale is included in the graphs.

Step 2
The next step is to define the fuzzy rules. The fuzzy rules are mearly a series of
if-then statements as mentioned above. These statements are usually derived by
an expert to achieve optimum results. Some examples of these rules are:
i) If angle is zero and angular velocity is zero then speed is also zero. ii) If angle
is zero and angular velocity is low then the speed shall be low.
The full set of rules is summarised in the table below. The dashes are for
conditions, which have no rules ascociated with them. This is don eto simplify the
situation.

An application of these rules is shown using specific values for angle and angular
velocities. The values used for this example are 0.75 and 0.25 for zero and
positive-low angles, and 0.4 and 0.6 for zero and negative-low angular velocities.
These points sre on the graphs below.

 73

Consider the rule "if angle is zero and angular velocity is zero, the speed is zero".
The actual value belongs to the fuzzy set zero to a degree of 0.75 for "angle" and
0.4 for "angular velocity". Since this is an AND operation, the minimum criterion
is used , and the fuzzy set zero of the variable "speed" is cut at 0.4 and the
patches are shaded up to that area. This is illustrated in the figure below.

 74

Similarly, the minimum criterion is used for the other three rule. The following
figures show the result patches yielded by the rule "if angle is zero and angular
velocity is negative low, the speed is negative low", "if angle is positive low and
angular velocity is zero, then speed is positive low" and "if angle is positive low
and angular velocity is negative low, the speed is zero".

The four results overlaps and is reduced to the following figure

Step 3: The result of the fuzzy controller as of know is a fuzzy set (of speed). In
order to choose an appropriate representative value as the final output(crisp
values), defuzzification must be done. There are numerous defuzzification

 75

methods, but the most common one used is the center of gravity of the set as
shown below.

What do you mean fuzzy ??!!

Before illustrating the mechanisms which make fuzzy logic machines work, it is
important to realize what fuzzy logic actually is. Fuzzy logic is a superset of
conventional (Boolean) logic that has been extended to handle the concept of
partial truth- truth-values between "completely true" and "completely false". As its
name suggests, it is the logic underlying modes of reasoning which are
approximate rather than exact. The importance of fuzzy logic derives from the
fact that most modes of human reasoning and especially common sense
reasoning are approximate in nature.
The essential characteristics of fuzzy logic as founded by Zader Lotfi are as
follows.

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate
reasoning.

• In fuzzy logic everything is a matter of degree.
• Any logical system can be fuzzified.
• In fuzzy logic, knowledge is interpreted as a collection of elastic or,

equivalently, fuzzy constraint on a collection of variables
• Inference is viewed as a process of propagation of elastic constraints.

The third statement hence, defines Boolean logic as a subset of Fuzzy logic.

Fuzzy Sets

Fuzzy Set Theory was formalized by Professor Lofti Zadeh at the University of
California in 1965. What Zadeh proposed is very much a paradigm shift that first
gained acceptance in the Far East and its successful application has ensured its
adoption around the world.

 76

A paradigm is a set of rules and regulations, which defines boundaries and tells
us what to do to be successful in solving problems within these boundaries. For
example the use of transistors instead of vacuum tubes is a paradigm shift -
likewise the development of Fuzzy Set Theory from conventional bivalent set
theory is a paradigm shift.
Bivalent Set Theory can be somewhat limiting if we wish to describe a
'humanistic' problem mathematically. For example, Fig 1 below illustrates
bivalent sets to characterise the temperature of a room.

The most obvious limiting feature of bivalent sets that can be seen clearly from
the diagram is that they are mutually exclusive - it is not possible to have
membership of more than one set (opinion would widely vary as to whether 50
degrees Fahrenheit is 'cold' or 'cool' hence the expert knowledge we need to
define our system is mathematically at odds with the humanistic world). Clearly, it
is not accurate to define a transiton from a quantity such as 'warm' to 'hot' by the
application of one degree Fahrenheit of heat. In the real world a smooth
(unnoticeable) drift from warm to hot would occur.
This natural phenomenon can be described more accurately by Fuzzy Set
Theory. Fig.2 below shows how fuzzy sets quantifying the same information can
describe this natural drift.

 77

The whole concept can be illustrated with this example. Let's talk about people
and "youthness". In this case the set S (the universe of discourse) is the set of
people. A fuzzy subset YOUNG is also defined, which answers the question "to
what degree is person x young?" To each person in the universe of discourse,
we have to assign a degree of membership in the fuzzy subset YOUNG. The
easiest way to do this is with a membership function based on the person's age.

young(x) = { 1, if age(x) <= 20,

(30-age(x))/10, if 20 < age(x) <= 30,

0, if age(x) > 30 }

A graph of this looks like:

 78

Given this definition, here are some example values:
Person Age degree of youth

Johan 10 1.00
Edwin 21 0.90
Parthiban 25 0.50
Arosha 26 0.40
Chin Wei 28 0.20
Rajkumar 83 0.00

So given this definition, we'd say that the degree of truth of the statement
"Parthiban is YOUNG" is 0.50.

Note: Membership functions almost never have as simple a shape as age(x).
They will at least tend to be triangles pointing up, and they can be much more
complex than that. Furthermore, membership functions so far is discussed as if
they always are based on a single criterion, but this isn't always the case,
although it is the most common case. One could, for example, want to have the
membership function for YOUNG depend on both a person's age and their height
(Arosha's short for his age). This is perfectly legitimate, and occasionally used in
practice. It's referred to as a two-dimensional membership function. It's also
possible to have even more criteria, or to have the membership function depend
on elements from two completely different universes of discourse.

Fuzzy Set Operations.
Union

The membership function of the Union of two fuzzy sets A and B with
membership functions and respectively is defined as the maximum
of the two individual membership functions. This is called the maximum
criterion.

 79

The Union operation in Fuzzy set theory is the equivalent of the OR
operation in Boolean algebra.

Intersection
The membership function of the Intersection of two fuzzy sets A and B
with membership functions and respectively is defined as the
minimum of the two individual membership functions. This is called the
minimum criterion.

The Intersection operation in Fuzzy set theory is the equivalent of the
AND operation in Boolean algebra.

 80

Complement
The membership function of the Complement of a Fuzzy set A with
membership function is defined as the negation of the specified
membership function. This is caleed the negation criterion.

The Complement operation in Fuzzy set theory is the equivalent of the NOT
operation in Boolean algebra.
The following rules which are common in classical set theory also apply to Fuzzy
set theory.
De Morgans law

,
Associativity

Commutativity

Distributive

Glossary

Universe of Discourse

The Universe of Discourse is the range of all possible values for an input
to a fuzzy system.

 81

Fuzzy Set
A Fuzzy Set is any set that allows its members to have different grades of
membership (membership function) in the interval [0,1].

Support
The Support of a fuzzy set F is the crisp set of all points in the Universe of
Discourse U such that the membership function of F is non-zero.

Crossover point
The Crossover point of a fuzzy set is the element in U at which its
membership function is 0.5.

Fuzzy Singleton
A Fuzzy singleton is a fuzzy set whose support is a single point in U with a
membership function of one.

6.4 Concept of Learning

One of the most often heard criticisms of AI is that machines cannot be called
intelligent until they are able to learn to do new things and to adapt to new
situations, rather than simply doing as they are told to do. There can be little
question that the ability to adapt to new surroundings and to solve new problems
is an important characteristic of intelligent entities. Can we expect to see such
abilities in programs? Ada Augusta, one of the earliest philosophers of
computing, wrote that

The Analytical Engine has no pretensions whatever to originate anything. It can
do whatever we know how to order it to perform.

Several AI critics have interpreted this remark as saying that computers cannot
learn. In fact, it does not say that at all. Nothing prevents us from telling a
computer how to interpret its inputs in such a way that its performance gradually
improves.

Rather than asking in advance whether it is possible for computers to "learn," it is
much more enlightening to try to describe exactly what activities we mean when
we say "learning" and what mechanisms could be used to enable us to perform
those activities. Simon has proposed that learning denotes changes in the
system that are adaptive in the sense that they enable the system to do the same
task or tasks drawn from the same population more efficiently and more
effectively the next time.

As thus defined, learning covers a wide range of phenomena. At one end of the
spectrum is skill refinement. People get better at many tasks simply by practicing.
The more you ride a bicycle or play tennis, the better you get. At the other end of
the spectrum lies knowledge acquisition. As we have seen, many AI programs
draw heavily on knowledge as their source of power. Knowledge is generally
acquired through experience and such acquisition is the focus of this chapter.

Knowledge acquisition itself includes many different activities. Simple storing of
computed information, or rote learning, is the most basic learning activity. Many
computer programs, e.g., database systems, can be said to "learn" in this sense,

 82

although most people would not call such simple storage, learning. However,
many AI programs are able to improve their performance substantially through
rote-learning technique and we will look at one example in depth, the checker-
playing program of Samuel.

Another way we learn is through taking advice from others. Advice taking is
similar to rote learning, but high-level advice may not be in a form simple enough
for a program to use directly in problem solving. The advice may need to be first
operationalized.

People also learn through their own problem-solving experience. After solving a
Complex problem, we remember the structure of the problem and the methods
we used to solve it. The next time we see the problem, we can solve it more
efficiently. Moreover, we can generalize from our experience to solve related
problems more easily contrast to advice taking, learning from problem-solving
experience does not usually involve gathering new knowledge that was
previously unavailable to the learning program. That is, the program remembers
its experiences and generalizes from them, but does not add to the transitive
closure of its knowledge, in the sense that an advice-taking program would, i.e.,
by receiving stimuli from the outside world. In large problem spaces, however,
efficiency gains are critical. Practically speaking, learning can mean the
difference between solving a problem rapidly and not solving it at all. In addition,
programs that learn though problem-solving experience may be able to come up
with qualitatively better solutions in the future.

Another form of learning that does involve stimuli from the outside is learning
from examples. We often learn to classify things in the world without being given
explicit rules. For example, adults can differentiate between cats and dogs, but
small children often cannot. Somewhere along the line, we induce a method for
telling cats from dogs - based on seeing numerous examples of each. Learning
from examples usually involves a teacher who helps us classify things by
correcting us when we are wrong. Sometimes, however, a program can discover
things without the aid of a teacher.

AI researchers have proposed many mechanisms for doing the kinds of
learning described above. In this chapter, we discuss several of them. But keep
in mind throughout this discussion that learning is itself a problem-solving
process. In fact, it is very difficult to formulate a precise definition of learning
that distinguishes it from other problem-solving tasks.

The five different learning methods are as follows

1. Memorization (rote learning)

Learning by memorization is the simplest form of learning. It requires the
least amount of inference and is accomplished by simply copying the
knowledge in the same form that it will be used directly into the knowledge
base. We use this type of learning when we memorize

2. Direct Instruction (by being told)

 83

It is slightly different more complex form of learning. This type of learning
requires more inference than rote learning since the knowledge must be
transformed into an operational form before being integrated into the
knowledge base. We use this type of learning when a teacher presents a
number of facts directly to us in well-organized manner.

3. Analogy

Analog learning is the process of learning a new concept or solution through
the use of similar known concepts or solutions. We use this type of learning,
when solving problems on an exam where previously learned examples
serve as a guide or when we learn to drive a truck using our knowledge of
car. This form of learning requires still more inferring than either of the
previous forms, since difficult transformations must be made between the
known and unknown situations.

4. Induction

It is the power full form of learning which, like analogical learning, also
requires the use of inferring than the first two methods. This form of learning
requires the use inductive inference, a form of invalid but useful inference.
We use inductive learning when we formulate a general concept after
seeing a number of instances or examples of the concept.

5. Deduction

It is accomplished through a sequence of deductive inference steps using
known facts. Fro known facts, new facts or relationship

6.5 Learning Automation

The theory of learning automata was first introduced in 1961 (Tsetlin, 1961).
Since that time these systems have been studied intensely, both analytically and
through simulations (Lakshmivarahan, 1981). Learning automata systems are
finite set adaptive systems, which interact iteratively with a general environment.
Through a probabilistic trial-and-error response process they learn to choose or
adapt to a behavior that produces the best response. They are, essentially, a
form of weak, inductive learners.

From Figure given below, we see that the learning model for learning automata
has been simplified for just two components, an automaton (learner) and an
environment. The learning cycle begins with an input to the learning automata
system from the environment. This input elicits one of a finite number of possible
responses and then provides some form of feedback to the automaton in return.
The automaton to alter its stimulus-response mapping structure to improve its
behavior in a more favorable way uses this feedback.

As a simple example, suppose a learning automata is being used to learn the
best temperature control setting for your office each morning. It may select any

 84

one of ten temperature range settings at the beginning of each day. Without any
prior knowledge of your temperature preferences, the automaton randomly
selects a first setting using the probability vector corresponding to the
temperature settings.

Figure Learning Automaton Model

Figure: Temperature Control Model

Since the probability values are uniformly distributed, any one of the settings will
be selected with equal likelihood. After the selected temperature has stabilized,
the environment may respond with a simple good-bad feedback response. If the
response is good, the automata will modify its probability vector by rewarding the
probability corresponding to the good setting with a positive increment and
reducing all other probabilities proportionately to maintain the sum equal to 1. If
the response is bad, the automaton will penalize the selected setting by reducing
the probability corresponding to the bad setting and increasing all other values
proportionately. This process is repeated each day until the good selections have
high probability values and all bad choices have values near zero. Thereafter, the
system will always choose the good settings. If, at some point, in the future your
temperature preferences change, the automaton can easily readapt.

Learning automata have been generalized and studied in various ways. One
such generalization has been given the special name of collective learning
automata (CLA). CLAs are standard learning automata systems except that
feedback is not provided to the automaton after each response. In this case,
several collective stimulus-response actions occur before feedback is passed to
the automaton. It has been argued (Bock, 1976) that this type of learning more
closely resembles that of human beings in that we usually perform a number or
group of primitive actions before receiving feedback on the performance of such

 85

actions, such as solving a complete problem on a test or parking a car. We
illustrate the operation of CLAs with an example of learning to play the game of
Nim in an optimal way.

Nim is a two-person zero-sum game in which the players alternate in removing
tokens from an array that initially has nine tokens. The tokens are arranged into
three rows with one token in the first row, three in the second row, and five in the
third row (Figure 7.10).

Figure : Nim Initial Configuration

The first player must remove at least one token but not more than all the tokens
in any single row. Tokens can only be removed from a single row during each
payer’s move. The second player responds by removing one or more tokens
remaining in any row. Players alternate in this way until all tokens have been
removed; the loser is the player forced to remove the last token.

We will use the triple (n1, n2, n3) to represent the states of the game at a given
time where n1, n2 and n3 are the numbers of tokens in rows 1, 2, and 3,
respectively. We will also use a matrix to determine the moves made by the CLA
for any given state. The matrix of Figure 7.11 has heading columns which
correspond to the state of the game when it is the CLA’s turn to move, and row
headings which correspond to the new game state after the CLA’s turn to move,
and row headings which correspond to the new game state after the CLA has
completed a move. Fractional entries in the matrix are transition probabilities
used by the CLA to execute each of its moves. Asterrisks in the matrix represent
invalid moves.

Beginning with the initial state (1, 3, 5), suppose the CLA’s opponent removes
two tokens from the third row resulting in the new state (1, 3, 3). If the ClA then
removes all three tokens from the second row, the resultant state is (1, 0, 3).
Suppose the opponent now removes all remaining tokens from the third row. This
leaves the CLA with a losing configuration of (1, 0, 0).

 86

Figure: CLA Internal Representation of Game States

As the start of the learning sequence, the matrix is initialized such that the
elements in each column are equal (uniform) probability values. For example,
since there are eight valid moves from the state (1, 3, 4) each column element
under this state corresponding to a valid move has been given uniform probability
values corresponding to all valid moves for the given column state.

The CLA selects moves probabilistically using the probability values in each
column. So, for example, if the CLA had the first move, any row intersecting with
the first column not containing an asterisk would be chosen with probability

9
1 .

This choice then determines the new game state from which the opponent must
select a move. The opponent might have a similar matrix to record game states
and choose moves. A complete game is played before the CLA is given any
feedback, at which time it is informed whether or not its responses were good or
bad. This is the collective feature of the CLA.

If the CLA wins a game, increasing the probability value in each column
corresponding to the winning move rewards all moves made by the CLA during
that game. All non-winning probabilities in those columns are reduced equally to
keep the sum in each column equal to 1. If the CLA loses a game, reducing the
probability values corresponding to each losing move penalizes the moves
leading to that loss. All other probabilities in the columns having a losing move
are increased equally to keep the column totals equal to 1.

After a number of games have been played by the CLA, the matrix elements that
correspond to repeated wins will increase toward one, while all other elements in
the column will decrease toward zero. Consequently, the CLA will choose the
winning moves more frequently and thereby improve its performance.

Simulated games between a CLA and various types of opponents have been
performed and the results plotted (Bock, 1985). It was shown, for example, that

 87

two CLAs playing against each other required about 300 games before each
learned to play optimally. Note, however, that convergence to optimality can be
accomplished with fewer games if the opponent always plays optimally (or
poorly), since, in such a case, the CLA will repeatedly lose (win) and quickly
reduce (increase) the losing (winning) move elements to zero (one). It is also
possible to speed up the learning process through the use of other techniques
such as learned heuristics.

Learning systems based on the learning automaton or CLA paradigm are fairly
general for applications in which a suitable state representation scheme can be
found. They are also quite robust learners. In fact, it has been shown that an LA
will converge to an optimal distribution under fairly general conditions if the
feedback is accurate with probability greater 0.5 (Narendra and Thathachar,
1974). Of course, the rate of convergence is strongly dependent on the reliability
of the feedback.

Learning automata are not very efficient learners as was noted in the game-
playing example above. They are, however, relatively easy to implement,
provided the number of states is not too large. When the number of states
becomes large, the amount of storage and the computation required to update
the transition matrix becomes excessive.

Potential applications for learning automata include adaptive telephone routing
and control. Such applications have been studied using simulation programs
(Narendra et al., 1977).

6.6 Genetic Algorithm

Genetic Algorithms allow you to explore a space of parameters to find solutions
that score well according to a "fitness function". They are a way to implement
function optimization: given a function g(x) (where x is typically a vector of
parameter values), find the value of x that maximizes (or minimizes) g(x). This is
an unsupervised learning problem―the right answer is not known beforehand.
For pathfinding, given a starting position and a goal, x is the path between the
two and g(x) is the cost of that path. Simple optimization approaches like hill-
climbing will change x in ways that increase g(x). Unfortunately in some
problems, you reach "local maxima", values of x for which no nearby x has a
greater value of g, but some faraway value of x is better. Genetic algorithms
improve upon hill climbing by maintaining multiple x, and using evolution-inspired
approaches like mutation and crossover to alter x. Both hill-climbing and genetic
algorithms can be used to learn the best value of x. For path finding, however,
we already have an algorithm (A*) to find the best x, so function optimization
approaches are not needed.

Genetic Programming takes genetic algorithms a step further, and treats
programs as the parameters. For example, you would breeding path finding
algorithms instead of paths, and your fitness function would rate each algorithm

 88

based on how well it does. For path finding, we already have a good algorithm
and we do not need to evolve a new one.

It may be that as with neural networks, genetic algorithms can be applied to
some portion of the path-finding problem. However, I do not know of any uses in
this context. Instead, a more promising approach seems to be to use path
finding, for which solutions are known, as one of many tools available to evolving
agents.

6.7 Learning by Induction

Classification is the process of assigning, to a particular input, the name of a
class to which it belongs. The classes from which the classification procedure
can choose can be described in a variety of ways. Their definition will depend on
the use to which they will be put.

Classification is an important component of many problem-solving tasks. In its
simplest form, it is presented as a straightforward recognition task. An example
of this is the question "What letter of the alphabet is this?" But often classification
is embedded inside another operation. To see how this can happen, consider a
problem-solving system that contains the following production rule:

If: the current goal is to get from place A to place B, and

there is a WALL separating the two places

then: look for a DOORWAY in the WALL and go through it.

To use this rule successfully, the system's matching routine must be able to
identify an object as a wall. Without this, the rule can never be invoked. Then, to
apply the rule, the system must be able to recognize a doorway.

Before classification can be done, the classes it will use must be defined. This
can be done in a variety of ways, including:

Isolate a set of features that are relevant to the task domain. Define each class
by a weighted sum of values of these features. Each class is then defined by a
scoring function that looks very similar to the scoring functions often used in
other situations, such as game playing. Such a function has the form.

 C1t1 + C2V2 + C3t3 + ...

Each t corresponds to a value of a relevant parameter, and each c represents the
weight to be attached to the corresponding t. Negative weights can be used to
indicate features whose presence usually constitutes negative evidence for a
given class.

For example, if the task is weather prediction, the parameters can be such
measurements as rainfall and location of cold fronts. Different functions can be
written to combine these parameters to predict sunny, cloudy, rainy, or snowy
weather.

 89

Isolate a set of features that are relevant to the task domain. Define each class
as a structure composed of those features. For example, if the task is to identify
animals, the body of each type of animal can be stored as a structure, with
various features representing such things as color, length of neck, and feathers.

There are advantages and disadvantages to each of these general approaches.
The statistical approach taken by the first scheme presented here is often more
efficient than the structural approach taken by the second. But the second is
more flexible and more extensible.

Regardless of the way that classes are to be described, it is often difficult to
construct, by hand, good class definitions. This is particularly true in domains that
are not well understood or that change rapidly. Thus the idea of producing a
classification program that can evolve its own class definitions is appealing. This
task of constructing class definitions is called concept learning, or induction. The
techniques used for this task J must, of course, depend on the way that classes
(concepts) are described. If classes are described by scoring functions, then
concept learning can be done using the technique of coefficient adjustment. If,
however, we want to define classes structurally, some other technique for
learning class definitions is necessary. In this section, we present three such
techniques.

6.8 Neural Networks

Neural networks are structures that can be "trained" to recognize patterns in
inputs. They are a way to implement function approximation: given y1 = f(x1), y2 =
f(x2), ..., yn = f(xn), construct a function f' that approximates f. The approximate
function f' is typically smooth: for x' close to x, we will expect that f'(x') is close to
f'(x). Function approximation serves two purposes:

• Size: the representation of the approximate function can be significantly
smaller than the true function.

• Generalization: the approximate function can be used on inputs for which
we do not know the value of the function.

Neural networks typically take a vector of input values and produce a vector of
output values. Inside, they train weights of "neurons". Neural networks use
supervised learning, in which inputs and outputs are known and the goal is to
build a representation of a function that will approximate the input to output
mapping.

In path finding, the function is f(start, goal) = path. We do not already know the
output paths. We could compute them in some way, perhaps by using A*. But if
we are able to compute a path given (start, goal), then we already know the
function f, so why bother approximating it? There is no use in generalizing f
because we know it completely. The only potential benefit would be in reducing
the size of the representation of f. The representation of f is a fairly simple

 90

algorithm, which takes little space, so I don't think that's useful either. In addition,
neural networks produce a fixed-size output, whereas paths are variable sized.

Instead, function approximation may be useful to construct components of path
finding. It may be that the movement cost function is unknown. For example, the
cost of moving across an orc-filled forest may not be known without actually
performing the movement and fighting the battles. Using function approximation,
each time the forest is crossed, the movement cost f(number of orcs, size of
forest) could be measured and fed into the neural network. For future pathfinding
sessions, the new movement costs could be used to find better paths. Even
when the function is unknown, function approximation is useful primarily when
the function varies from game to game. If a single movement cost applies every
time someone plays the game, the game developer can precompute it
beforehand.

Another function that is could benefit from approximation is the heuristic. The
heuristic function in A* should estimate the minimum cost of reaching the
destination. If a unit is moving along path P = p1, p2, ..., pn, then after the path is
traversed, we can feed n updates, g(pi, pn) = (actual cost of moving from i to n),
to the approximation function h. As the heuristic gets better, A* will be able to run
quicker.

Neural networks, although not useful for path finding itself, can be used for the
functions used by A*. Both movement and the heuristic are functions that can
be measured and therefore fed back into the function approximation.

The Backpropagation Algorithm

1. Propagates inputs forward in the usual way, i.e.

• All outputs are computed using sigmoid thresholding of the inner
product of the corresponding weight and input vectors.

• All outputs at stage n are connected to all the inputs at stage n+1

2. Propagates the errors backwards by apportioning them to each unit according
to the amount of this error the unit is responsible for.
We now derive the stochastic Backpropagation algorithm for the general case.
The derivation is simple, but unfortunately the bookkeeping is a little messy.

• input vector for unit j (xji = ith input to the jth unit)

• weight vector for unit j (wji = weight on xji)

• , the weighted sum of inputs for unit j

 91

• oj = output of unit j ()
• tj = target for unit j
• Downstream(j) = set of units whose immediate inputs include the output of

j
• Outputs = set of output units in the final layer

Since we update after each training example, we can simplify the notation
somewhat by imagining that the training set consists of exactly one example and
so the error can simply be denoted by E.

We want to calculate for each input weight wji for each output unit j. Note
first that since zj is a function of wji regardless of where in the network unit j is
located,

Furthermore, is the same regardless of which input weight of unit j we are

trying to update. So we denote this quantity by .

Consider the case when . We know

Since the outputs of all units are independent of wji, we can drop the
summation and consider just the contribution to E by j.

 92

Thus

(17)

Now consider the case when j is a hidden unit. Like before, we make the
following two important observations.
1.

For each unit k downstream from j, zk is a function of zj
2.

The contribution to error by all units in the same layer as j is
independent of wji

We want to calculate for each input weight wji for each hidden unit j. Note
that wji influences just zj which influences oj which influences

each of which influence E. So we can write

 93

Again note that all the terms except xji in the above product are the same
regardless of which input weight of unit j we are trying to update. Like before, we

denote this common quantity by . Also note that , and

. Substituting,

Thus,

(18)

We are now in a position to state the Backpropagation algorithm formally.

Formal statement of the algorithm:

Stochastic Backpropagation (training examples, , ni, nh, no)

Each training example is of the form where is the input vector and is

the target vector. is the learning rate (e.g., .05). ni, nh and no are the number of
input, hidden and output nodes respectively. Input from unit i to unit j is denoted
xji and its weight is denoted by wji.

• Create a feed-forward network with ni inputs, nh hidden units, and no
output units.

• Initialize all the weights to small random values (e.g., between -.05 and
.05)

• Until termination condition is met, Do

o For each training example , Do

1. Input the instance and compute the output ou of every unit.
2. For each output unit k, calculate

 94

3. For each hidden unit h, calculate

4. Update each network weight wji as follows:

6.9 Summary

In this lesson we have investigated different types of structural knowledge
representation methods. We considered associative networks (semantic net) , , a
representation based on a structure of linked nodes(concepts) and arcs
(relations) connecting the nodes. With these networks we saw how related
concepts could be structured into cohesive units and exhibited as graphical
representation. A frame is a collection of attributes (usually called slots) and
associated values (and possibly constraints on values) that describe some entity
in the world. In this lesion we also described a special frame-like structure called
scripts. Scripts are used to represent stereotypical patterns for commonly
occurring events. Like a play scripts contains actors, roles, props, and scenes,
which combine to represent a familiar situation. Scripts have been used in a
number of programs, which read and “understood” language in the form of
stories.

6.10 Key Words

Probabilistic Reasoning, Use of Certainty Factors, Fuzzy Logic, Concept of
Learning, Learning Automata, Genetic Algorithm, Learning by Induction, Neural
Networks, Back Propagation Algorithm.

6.11 Self Assessments Questions

Answer the following questions

Q1. How machine learning distinguished from general knowledge acquisition?

Q2. Describe the role of each component of a general learning model and why
it is needed for the learning process.

 95

Q3. Explain why inductive learning should require more inference than learning
by being told (instructions).

Q4. Describe the similarities and difference between learning automata and
genetic algorithms.

Q5. Write short note on the following: -

d. Probabilistic Reasoning

e. Use of Certainty Factors

f. Fuzzy Logic

g. Neural Network

Reference/Suggested Reading

 Foundations of Artificial Intelligence and Expert System - V S
Janakiraman, K Sarukesi, & P Gopalakrishanan, Macmillan Series.

 Artificial Intelligence – E. Rich and K. Knight

 Principles of Artificial Intelligence – Nilsson

 Expert Systems-Paul Harmon and David King, Wiley Press.

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe,
eds., Addison Wesley.

 Introduction to Artificial Intelligence and Expert System- Dan W. Patterson,
PHI, Feb., 2003.

 96

Paper Code : MCA 402 Author :Om Parkash
Lesson No. 07 Vettor : Saroj
Lesson Name: Expert Systems
__
Structure
7. 0 Objectives
7.1 What is an Expert System?
7.2 Need & Justification for Expert System
7.3 Components of an Expert System
7.4 Knowledge Acquisition
7.5 Case Study on MYCIN
7.6 RI
7.7 Summary
7.8 Self Assessment Questions

7.0 Objective
The present lesson elaborates the application of AI i.e. Expert System. Expert System is a
program that is expertise in a particular domain. MYCIN and RI are also discussed as
case study of an expert system. Upon completion of this lesson students know about
distinguish features of an expert system and how to use the existing expert system (i.e.
MYCIN & RI).

7.1 What is Expert System?

An Expert System contains knowledge about a specific field to assist human
experts or provide information to people who do not have access to an expert in
the particular field. An Expert System act as intelligent assistants to human
experts. Knowledge Engineer and Domain Expert are the key personnel, work
together to design an expert system

7.1.1 Need and Justification of Expert Systems

Human experts in any field are frequently in great demand and are therefore,
usually in short supply. One solution of this problem is Expert system. An Expert
system may be defined as an AI computer program specially designed to
represent human expertise in a particular domain (area of Expertise). Expert
systems have been proven to be effective in a number of problem domains,
which normally require the kind of intelligence possessed by a human expert.

According to Paul Harmon and David King, expert system can help meet the
following needs:

 New approaches to business and productivity,

 97

 Expertise,

 Knowledge

 Competence, and

 Smart automated equipment.

The areas of application are almost endless. Wherever human expertise is
needed to solve a problem, expert systems are most likely of the options sought.
Application domain includes Medical, law, chemistry, biology engineering,
finance, banking, manufacturing, aerospace military operations, meteorology,
geology, geophysics and many more. In this lesson we attempts to demystify
expert systems by examining, in detail, what they are and how they are
developed. Also, case study of MYCIN & RI is provided to increase your
familiarities with these remarkable programs.

7.2 Components of an Expert System

Although components of an Expert System vary in their design, most Expert
Systems have a knowledge base, an inference engine and a user interface.

Knowledge Base

Inference Engine

Declarative
Knowledge

U

S

E
R

I
N
T
E
R
F
A

Bi-directional
Communication
with the User

Procedural
Knowledge

 98

Figure 7.1: - Expert System
Components

The component of expert system that contains system’s knowledge is called its
knowledge base. A knowledge base contains both declarative knowledge (facts
about objects, events, and situations) and procedural knowledge (information
about course of action). The inference engine of an expert system controls how
and when the information to the Knowledge base is applied. The user interface
component enables you to communicate with an expert system. The
communication performed by a user interface is bi-directional.

7.3 Characteristics Features of an Expert System

 Although each system is unique, certain features are desirable for any expert
system.

 The program should be useful.
 An expert system should be developed to meet a specified need.
 The program should be usable. An expert system should be designed so that

even a layman finds it’s easy to use.
 The program should be educational when appropriate.
 The program should be able to explain its advice.
 The program should be respond to simple questions.
 The program should be learn new knowledge.
 The program’s knowledge should be easily modified.

 99

7.4 Knowledge Acquisition

Knowledge acquisition is the process of adding new knowledge to a knowledge
base & refining or otherwise improving knowledge that was previously acquired.
Knowledge acquisition is the most important aspect of the expert system
development. It is referred to as the process of getting and transforming
appropriate information out of an expert’s head, document or any source into
some manageable form. The idea of getting knowledge from an expert and
presenting that information is a very common occurrence eg: Reporters, Journals
and writers are a regular conductor of these processes. They are classed as
knowledge engineers who interview many people and then publish their
information in the newspapers.

The three major approaches for knowledge acquisition are:

1. Interviewing Expert

This involves the knowledge engineer having a face-to-face interview with the
expert. This technique does not require any equipment. It’s just a verbal talking
with each other. Therefore it is important that the knowledge engineer has good
communication skills and the expert should be able to express his knowledge
with the engineer. The engineer collects lot of information by asking many
questions and programs it into the knowledge base.

2. Learning by Being Told

In this approach the expert system user-interface conducts a conversation or
discussion with the expert and the expert has to represent and refine his/her own
knowledge from what he understands. The knowledge engineer handles the
design and makes the activity easier to understand.

3. Learning by Observation

This approach the expert system gives the expert some sample problem outline
or case studies, which the expert has to solve. The problems are usually
examples of previous events which the expert has to solve using an algorithm
known as Induction. This algorithm helps expert to gain knowledge and it
simplifies those examples into rules.

7.4.1 Knowledge Acquisition Process

 100

The expert system development uses a methodology known as Rapid
Prototyping. These involve selection and development of a section of a system,
which is tested on part of the system for refinement, and further development.
Once the initial development i.e. the design and knowledge base decisions have
been made; a prototype (a trial model) is developed to allow other developer to
test their ideas of design. This will enable them to test each stage as it is
developed and see if the system is working properly.

7.4.2 Knowledge Acquisition stages

Knowledge acquisition has five stages throughout the development. The stages
are as following:

 Identification

This stage identifies the problems and the knowledge engineer becomes aware
of the domain, its goals and selects the correct material.

 Conceptualization

This defines how the concepts or ideas and the associations between them are
outlined and how experts relate them.

 Formalization

Here the knowledge engineer organizes the concepts, tasks and other
information into formal and clear representation.

 Implementation

Here the knowledge rules are put into a structured form for the expert system tool
and a prototype (trial model) is created for testing out the design and the
processes. The knowledge engineer has to produce a written documentation that
will connect the knowledge base topics with the original data that were created
earlier.

 Testing

The prototype system is tested for its efficiency and accuracy to see if it is
working as required. In order to do this a small scenario or problem set is tested
and the results from this system are used to alter or improve the prototype
system.

7.5 MYCIN

MYCIN is an expert system that helps diagnose bacteriological blood infections.
The development of MYCIN began at Stanford University. MYCIN is an expert

 101

system, which diagnoses infectious blood diseases and determines a
recommended list of therapies for the patient. As part of the Heuristic
Programming Project at Stanford, several projects directly related to MYCIN were
also completed including a knowledge acquisition component called
THEIRESIUS, a tutorial component called GUIDON, and a shell component
called EMYCIN (for Essential MYCIN). EMYCIN was used to build other
diagnostic systems including PUFF, a diagnostic expert for pulmonary diseases.
EMYCIN also became the design model for several commercial expert system
building tools.

MYCIN’s performance improved significantly over a period of several year as
additional knowledge was added. Tests indicate that MYCIN’ performance now
equals or exceeds that of experienced physicians. The initial MYCIN knowledge
base contained about only 200 rules. This number was gradually increased to
more than 600 rules by the early 1980s. The added rules significantly improved
MYCIN’s performance leading to a 65% success record that compared favorably
with experienced physicians who demonstrated only an average 60% success
rate.

Subgoaling in MYCIN

MYCIN is a heterogeneous program, consisting of many different modules. There
is a part of MYCIN's control structure that performs a quasi-diagnostic function.
But the goals to be achieved are not physical goals, involving the movement of
objects in space, but reasoning goals that involve the establishment of diagnostic
hypothesis.

This section concentrates upon the diagnostic module of MYCIN, giving a
simplified account of its function, structure and runtime behavior.

Treating blood infections

Firstly, we need to give a brief description of MYCIN's domain: treatment of blood
infections. This description pre-supposes no specialized medical knowledge on
the part of the reader. But, as with any expert system, having some
understanding of the domain is crucial to understand what the program does.

An 'anti-microbial agent' is any drug designed to kill bacteria or arrest their
growth. Some agents are too toxic for therapeutic purposes, and there is no
single agent effective against all bacteria. The selection of therapy for bacterial
infection can be viewed as a four-part decision process:

• Deciding if the patient has a significant infection;

• Determining the (possible) organism(s) involved;

• Selecting a set of drugs that might be appropriate;

• Choosing the most appropriate drug or combination of drugs.

 102

Samples taken from the site of infection are sent to a microbiology laboratory for
culture, that is, an attempt to grow organisms from the sample in a suitable
medium.

Early evidence of growth may allow a report of the morphological or staining
characteristics of the organism. However, even if an organism is identified, the
range of drugs it is sensitive to may be unknown or uncertain.

MYCIN is often described as a diagnostic program, but this is not so. Its purpose
is to assist a physician who is not an expert in the field of antibiotics with the
treatment of blood infections. In doing so, it develops diagnostic hypotheses and
weights them, but it need not necessarily choose between them. Work on MYCIN
began in 1972 as collaboration between the medical and AI communities at
Stanford University. The most complete single account of this work is Short-life
(1976).

There have been a number of extensions, revisions and abstractions of MYCIN
since 1976, but the basic version has five components shown in the fig. 7.2,
which shows the basic pattern of information flow between the modules.

(1} A-knowledgebase, which contains factual and judgmental knowledge
about the domain.

(2) A dynamic patient database containing information about a particular
case.

(3) A consultation program, which asks questions, draws conclusions, and
gives advice about a particular case based on the patient data and the
static knowledge.

(4) An explanation program, which answers questions and justifies its advice,
using static knowledge and a trace of the program’s execution.

(5) A knowledge acquisition program for adding new rules and changing
existing ones.

The system consisting of components (l)-(3) is the problem solving pan of
MYCIN, which generates hypotheses with respect to the offending organisms,
and makes therapy recommendations based on these hypotheses.

 103

Figure 7.2: Organization of MYCIN

MYCIN's knowledge base

MYCIN's knowledge base is organized around a set of rules of the general form

if condition1 and ... and conditionm hold

then draw conclusion1 and... and conclusionn

encoded as data structures of the LISP programming language

Figure 7.3 shows the English translation of a typical MYCIN rule for inferring
class of an organism. The program itself provides this translation. Such rules are
called ORGRULES and they attempt to cover such organisms as streptococcus,
pseudomonas, and entero-bacteria.

The rule says that if an isolated organism appears rod-shaped, stains in a certain
way, and grows in the presence of oxygen, then it is more likely to be in the class
entero-bacteria. The number 0.8 is called the tally of the rule, which says how
certain conclusion is given, that the conditions are satisfied. The use of the tally
is explained below. Each rule of this kind can be thought of as encoding a piece
of human knowledge whose applicability depends only upon the context
established by the conditions of the rule.

The conditions of a rule can also be satisfied with varying degrees of certainty,
the import of such rules roughly is as follows:

if condition1 holds with certainty x1 ... and conditionm holds with certainty xm

then draw conclusion1 with certainty y1 and... and conclusionn with certainty yn

 104

where the certainty associated with each conclusion is a function of the
combined certainties of the conditions and the tally, which is meant to reflect our
degree of confidence in the application of the rule.

In summary, a rule is a premise-action pair and such rules are sometimes called
‘productions' for purely historical reasons. Premises are conjunction of
conditions, and their certainty is a function of the certainty of these conditions.
Conditions are either proposition, which evaluate the truth or falsehood with
some degree of certainty, (for example 'the organism is rod-shaped') or
disjunctions of such conditions. Actions are either conclusions to be drawn with
some appropriate degree of certainty, for example the identity of some organism,
or instructions to be carried out, for example compiling a list of therapies.

We will explore the details of how rules are interpreted and scheduled for
application in the following sections, but first we must look at MYCIN's other
structures for representing medical knowledge.

IF 1) The stain of the organism is gramneg, and

2) The morphology of the organism is rod, and

3) The aerobicity of the organism is aerobic

THEN There is strongly suggestive evidence (.8) that

the class of the organism is entero-bacteria

 A MYCIN ORGRULE for drawing the conclusion enterobacteriaaceae

In addition to rules, the knowledge base also stores facts and definitions in
various forms:

• simple lists, for example the list of all organisms known to the system;

• knowledge tables, which contain records of certain clinical parameters and
the values they take under various circumstances, for example the
morphology (structural shape) of every bacterium known to the system;

• a classification system for clinical parameters according to the context in
which they apply, for example whether they are attributes of patients or
organisms.

Much of the knowledge not contained in the rules resides in the properties
associated with the 65 clinical parameters known to MYCIN. For example, shape
is an attribute of organisms which can take on various values, such as 'rod' and
'coccus.' Parameters are also assigned properties by the system for its own
purposes. The main ones either (i) help to monitor the interaction with the user,
or (ii) provide indexes which guides the application of rules.

Patient information is stored in a structure called the context tree, which serves to
organize case data. Figure on next page shows a context tree representing a

 105

particular patient, PATIENT-1, with three associated cultures (samples, such as
blood samples, from which organisms may be isolated) and a recent operative
procedure that may need to be taken into account (for example, because drugs
were involved, or because the procedure involves particular risks of infection).
Associated with cultures are organisms that are suggested by laboratory data,
and associated with organisms are drugs that are effective against them.

Imagine that we have the following data stored in a record structure associated
with the node for ORGANISM-1:

GRAM = (GRAMNEG 1.0)

MORPH = (ROD .8) (COCCUS .2)

AIR = (AEROBIC .6)

with the following meaning:

• the Gram stain of ORGANISM-1 is definitely Gram negative;

• ORGANISM-1 has a rod morphology with certainty 0.8 and a coccus
morphology with certainty 0.2;

• ORGANISM-1 is aerobic (grows in air) with certainty 0.6.

Figure 7.3: A typical MYCIN context tree

Suppose now that the rule of conclusion above is applied. We want to compute
the certainty that all three conditions of the rule

IF 1) the stain of the organism is gramneg, and

2) the morphology of the organism is rod, and

3) the aerobicity of the organism is aerobic

 106

THEN there is strongly suggestive evidence (0.8) that the class of
the organism is entero-bacteria.

are satisfied by the data. The certainty of the individual conditions is 1.0, 0.8 and
0.6 respectively, and the certainty of their conjunction is taken to be the minimum
of their individual certainties, hence 0.6.

The idea behind taking the minimum is that we are only confident in a
conjunction of conditions to the extent that we are confident in its least inspiring
element. This is rather like saying that a chain is only as strong as its weakest
link. By an inverse argument, we argue that our confidence in a disjunction of
conditions is as strong as the strongest alternative, that is, we take the maximum.
This convention forms part of a style of inexact reasoning called fuzzy logic.

In the case, we draw the conclusion that the class of the organism is entero-
bacteria with a degree of certainty equal to

0.6 x 0.8 = 0.48

The 0.6 represents our degree of certainty in the conjoined conditions, while the
0.8 stands for our degree of certainty in the rule application. These degrees of
certainty are called certainty factors (CFs). Thus, in the general case,

CF(action) x CF(premise) x CF(rule).

Where we revisit the whole topic of how to represent uncertainty. It turns out that
the CF model is not always in agreement with the theory of probability; in other
words, it is not always correct from a mathematical point of view. However, the
computation of certainty factors is much more tractable than the computation of
the right probabilities, and the deviation does not appear to be very great in the
MYCIN application.

MYCIN’s control structure

MYCIN has a top-level goal rule which define the whole task of the consultation
system, which is paraphrased below:

IF 1) there is an organism which requires therapy and

2) consideration has been given to any other organisms requiring
therapy

THEN compile a list of possible therapies, and determine the best one in
this list.

A consultation session follows a simple two-step procedure:

• Create the patient context as the top node in the context tree;

• Attempt to apply the goal rule to this patient context.

Applying the rule involves evaluating its premise, which involves finding out if
there is indeed an organism, which requires therapy. In order to find this out, it

 107

must first find out if there is indeed an organism present which is associated with
a significant disease. This information can either be obtained from the user
directly, or via some chain of inference based on symptoms and laboratory data
provided by the user.

The consultation is essentially a search through a tree of goals. The top goal at
the root of the tree is the action part of the goal rule, that is, the recommendation
of a drug therapy. Subgoals further down the tree include determining the
organism involved and seeing if it is significant. Many of these subgoals have
subgoals of their own, such as finding out the stain properties and morphology of
an organism. The leaves of the tree are fact goals, such as laboratory data,
which cannot be deduced.

A special kind of structure, called an AND/OR tree, is very useful for representing
the way in which goals can be expanded into subgoals by a program. The basic
idea is that root node of the tree represents the main goal, terminal nodes
represent primitive actions that can be carried out, while non-terminal nodes
represent subgoals that are susceptible to further analysis. There is a simple
correspondence between this kind of analysis and the analysis of rule sets.

Consider the following set of condition-action rules:

if X has BADGE and X has GUN, then X is POLICE

if X has REVOI.VER or X as PISTOL or X has RIFLE, then X has GUN

if X has SHIELD, then X has BADGE

We can represent this rule set in terms of a tree of goals, so long as we maintain
the distinction between conjunctions and disjunctions of subgoals. Thus, we draw
an arc between the links connecting the nodes BADGE and GUN with the node
POLICE, to signify that both subgoals BADGE and GUN must be satisfied in
order to satisfy the goal POLICE. However, there is no arc between the links
connecting REVOLVER and PISTOL and RIFLE with GUN, because satisfying
either of these will satisfy GUN. Subgoals as BADGE can have a single child,
SHIELD, signifying that a shield counts as a badge.

The AND/OR tree in Figure 7.4 can be thought of as a way of representing the
search space for POLICE, by enumerating the ways in which different operators
can be applied in order to establish POLICE as true.

 108

Figure 7.4: Representing a rule set as an AND/OR tree

This kind of control structure is called backward chaining, since the program
reasons backward from what it wants to prove towards the facts that it needs,
rather than reasoning forward from the facts that it possesses. In MYCIN, goals
were achieved by breaking them down into sub goals to which operators could
be applied. Searching for a solution by backward reasoning is generally more
focused than forward chaining, as we saw earlier, since one only considers
potentially relevant facts.

MYCIN's control structure uses an AND/OR tree, and is quite simple as AI
programs go;

(1) Each sub goal set up is always a generalized form of the original goal. So, if
the sub goal is to prove the proposition that the identity of the organism is
E. Coli, then the subgoal actually set up is to determine the identity of the
organism. This initiates an exhaustive search on a given topic, which
collects all of the available evidence about organisms.

(2) Every rule relevant to the goal is used, unless one of them succeeds with
certainty. If more than one rule suggest a conclusion about a parameter,
such as the nature of the organism, then their results are combined. If the
evidence about a hypothesis falls between -0.2 and +0.2, it is regarded as
inconclusive, and the answer is treated as unknown.

(3) If the current subgoal is a leaf node, then attempt to satisfy the goal by asking
the user for data. Else set up the subgoal for further inference, and go to
(1).

The selection of therapy takes place after this diagnostic process has run its
course. It consists of two phases: selecting candidate drugs, and then choosing a
preferred drug, or combination of drugs, from this list.

 109

Evidence Combination

In MYCIN, two or more rules might draw conclusions about a parameter with
different Weights of evidence. Thus one rule might conclude that the organism is
E. Coli with a certainty of 0.8, while another might conclude from other data that it
is E. Coli with a certainty of 0.5 or – 0.8. In the case of a certainty less than zero,
the evidence is actually against the hypothesis.

Let X and Y be the weights derived from the application of different rules. MYCIN
combines these weights using the following formula to yield the single certainty
factor.

where |X| denotes the absolute value of X.

One can see what is happening on an intuitive basis. If the two pieces of
evidence both confirm (or disconfirm) the hypothesis, then confidence in the
hypothesis goes up (or down). If the two pieces of evidence are in conflict, then
the denominator dampens the effect.

This formula can be applied more than once, if several rules draw conclusions
about the same parameter. It is commutative, so it does not matter in what order
weights are combined.

IF the identity of the organism is pseudomonas

THEN I recommend therapy from among the following drugs:

1 CCLISTIN (.98)

2 POLYMYXIN (.96)

3 QENTAMICIN (.96)

4 CARBENICILLIN (.65)

5 SULFISOXAZOLE (.64)

 A MYCIN therapy rule

The special goal rule at the top of the AND/OR tree does not lead to a
conclusion, but instigates actions, assuming that the conditions in the premise
are satisfied. At this point, MYCIN's therapy rules for selecting drug treatments
come into play; they contain sensitivities information for the various organisms
known to the system. A sample therapy rule is given above.

The numbers associated with the drug are the probabilities that a pseudomonas
will be sensitive to the indicated drug according to medical statistics. The

 110

preferred drug is selected from the list according to criteria, which attempts to
screen for contra-indications of the drug and minimize the number of drugs
administered, in addition to maximizing sensitivity. The user can go on asking for
alternative therapies until MYCIN runs out of options, so the pronouncements of
the program are not definitive.

7.6 RI

RI (sometimes also called XCON) is a program that configures DEC VAX
systems. Its rules look like this:

If: The most current active context is distributing massbus
devices, and

There is a single-port disk drive that has not been' assigned
to a massbus, and

 The number of devices that each massbus should support is
known, and

 There is a massbus that has been assigned at least

 One disk drive and that should support additional disk
drives and

The type of cable needed to connect the disk drive to the
previous device on the massbus is known

then

Assign the disk drive to the massbus.

Notice that Rl's rules, unlike MYCIN's, contain no numeric measures of certainty.
In the task domain with which RI deals, it is possible to state exactly the correct
thing to be done in each particular set of circumstances (although it may require
a relatively complex set of antecedents to do so). One reason for this is that there
exists a good deal of human expertise in this area. Another is that since RI is
doing a design task (in contrast to the diagnosis task performed by MYCIN), it is
not necessary to consider all possible alternatives; one good one is enough. As a
result, probabilistic information is not necessary in RI.

PROSPECTOR is a program that provides advice on mineral exploration. Its
rules look like this:

If: Magnetite or pyrite in disseminated or vein let form is
present

then (2, -4) there is favourable mineralization and texture for the
propylitic stage.

In PROSPECTOR, each rule contains two confidence estimates. The first
indicates the extent to which the presence of the evidence described in the
condition part of the rule suggests the validity of the rule's conclusion. In the

 111

PROSPECTOR rule shown above, the number 2 indicates that the presence of
the evidence is mildly encouraging. The second-confidence estimate measures
the extent to which the evidence is necessary to the validity of the conclusion, or
stated another way, the extent to which the lack of the evidence indicates that the
conclusion is not valid. In the example rule shown above, the number -4 indicates
that the absence of the evidence is strongly discouraging for the conclusion.

DESIGN ADVISOR is a system that critiques chip designs. Its rules look like:

If The sequential 'level count of ELEMENT is greater than 2, UNLESS
the signal of ELEMENT is resetable

then Critique for poor resetability
DEFEAT Poor resetability of ELEMENT
due to Sequential level count of ELEMENT greater than 2
by ELEMENT is directly resetable

The DESIGN ADVISOR gives advice to a chip designer, who can accept or reject
the advice. If the advice is rejected, then system can exploit a justification-based
truth maintenance system to revise its model of the circuit. The first rule shown
here says that an element should be criticized for poor resetability if its sequential
level count is greater than two, unless its signal is currently believed to be
resetable. Resetability is a fairly common condition, so it is mentioned explicitly in
this first rule. But there is also a much less common condition, called direct
resetability. The DESIGN ADVISOR does not even bother to consider that
condition unless it gets in trouble with its advice. At that point, it can exploit the
second of the rules shown above. Specifically, if the chip designer rejects a
critique about resetability and if that critique was based on a high level count,
then the system will attempt to discover (possibly by asking the designer)
whether the element is directly resetable. If it is, then the original rule is defeated
and the conclusion withdrawn.

Reasoning with the Knowledge

As these example rules have shown, expert systems exploit many of the
representation and reasoning mechanisms that we have discussed. Because
these programs are usually, written primarily as rule-based systems, forward
chaining, backward chaining, or some combination of the two, is usually used.
For example, MYCIN used backward chaining to discover what organisms were
present; then it used forward chaining to reason from the organisms to a
treatment regime. RI, on the other hand, used forward chaining. As the field of
expert systems matures, more systems that exploit other kinds of reasoning
mechanisms are being developed. The DESIGN ADVISOR is an example of
such a system; in addition to exploiting rules, it makes extensive use of a
justification-based truth maintenance system.

Expert System Shells

Initially, each expert system that was built was created from scratch, usually in
LISP. But, after several systems had been built this way, it became clear that

 112

these systems often had a lot in common. In particular, since the systems were
constructed as a set of declarative representations (mostly rules) combined with
an interpreter for those representations, it was possible to separate the
interpreter from the domain-specific knowledge and thus to create a system that
could be used to construct new expert systems by adding new knowledge
corresponding to the new problem domain. The resulting interpreters are called
shells. One influential example of such a shell is EMYCIN (for Empty MYCIN),
which was derived from MYCIN.

There are now several commercially available shells that serve as the basis for
many of the expert systems currently being built. These shells provide much
greater flexibility in representing knowledge and in reasoning with it than MYCIN
did. They typically support rules, frames, truth maintenance systems, and a
variety of other reasoning mechanisms.

Early expert system shells provided mechanisms for knowledge representation,
reasoning, and explanation. Later, tools for knowledge acquisition were added.
Expert system shells needed to do something else as well. They needed to make
it easy to integrate expert systems with other kinds of programs. Expert systems
cannot operate in a vacuum, any more than their human counterparts can. They
need access to corporate databases, and access to them needs to be controlled
just as it does for other systems. They are often embedded within larger
application programs that use primarily conventional programming techniques.
So one of the important features that a shell must provide is an easy-to-use
interface between an expert system that is written with the shell and a larger,
probably more conventional, programming environment.

7.7 Summary

An expert system is a set of programs that manipulate encoded knowledge to
solve problems in a specialized domain that normally requires human expertise.
An expert system is usually built with the aid of one or more experts, who must
be willing to spend a great deal of effort transferring their expertise to the system.
Expert systems are complex AI programs. However, the expert systems
knowledge must be obtained from specialists or other sources of expertise, such
as texts, journals articles, and databases.

Knowledge acquisition is the most important aspect of the expert system
development. There are three basics approaches of knowledge acquisition i.e.
interviewing expert, learning by being told & learning by observation. Knowledge
acquisition has five stages throughout the development starting from
identification, conceptualization, formalization through implementation & testing

MYCIN is an expert system, which diagnoses infectious blood diseases and
determines a recommended list of therapies for the patient. RI (sometimes also
called XCON) is a program that configures DEC VAX systems

7.8 Key words

Expert System, Learning, Knowledge Acquisition, MYCIN & RI.

 113

7.9 Self Assessment Questions (SAQ)

Answer the following questions.

1. What is expert system? Explain the various stages of Expert System.

2. What is knowledge Acquisition? What is its role in AI?

3. Differentiate between RI & MYCIN.

 114

Reference/Suggested Readings
 Artificial Intelligence – E. Rich and K. Knight

 Principles of Artificial Intelligence – Nilsson

 Expert Systems-Paul Harmon and David King, Wiley Press.

 Rule Based Expert System-Bruce G. Buchanan and Edward H. Shortliffe, eds., Addison
Wesley.

